## **Thomas Friborg**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide.<br>Journal of Hydrology, 1997, 188-189, 589-611.                                                                          | 2.3 | 848       |
| 2  | Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters, 2004, 31, .                                                                                                     | 1.5 | 423       |
| 3  | Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.                                                                                                      | 8.1 | 225       |
| 4  | Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing.<br>Global Change Biology, 2006, 12, 2352-2369.                                                                        | 4.2 | 214       |
| 5  | The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.                                                  | 3.3 | 171       |
| 6  | Siberian wetlands: Where a sink is a source. Geophysical Research Letters, 2003, 30, .                                                                                                                                    | 1.5 | 150       |
| 7  | Trace gas exchange in a high-Arctic valley: 1. Variationsin CO2and CH4Flux between tundra vegetation types. Global Biogeochemical Cycles, 2000, 14, 701-713.                                                              | 1.9 | 143       |
| 8  | Annual cycle of methane emission from a subarctic peatland. Journal of Geophysical Research, 2010, 115, .                                                                                                                 | 3.3 | 128       |
| 9  | Biotic, Abiotic, and Management Controls on the Net Ecosystem CO2 Exchange of European Mountain<br>Grassland Ecosystems. Ecosystems, 2008, 11, 1338-1351.                                                                 | 1.6 | 122       |
| 10 | Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrology and<br>Earth System Sciences, 2016, 20, 697-713.                                                                             | 1.9 | 119       |
| 11 | Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change.<br>Environmental Research Letters, 2007, 2, 045015.                                                                    | 2.2 | 110       |
| 12 | Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature<br>Climate Change, 2020, 10, 555-560.                                                                                      | 8.1 | 106       |
| 13 | The variability of evaporation during the HAPEX-Sahel Intensive Observation Period. Journal of Hydrology, 1997, 188-189, 385-399.                                                                                         | 2.3 | 96        |
| 14 | Trace gas exchange in a high-Arctic valley: 3. Integrating and scaling CO2fluxes from canopy to<br>landscape using flux data, footprint modeling, and remote sensing. Global Biogeochemical Cycles,<br>2000, 14, 725-744. | 1.9 | 93        |
| 15 | Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic.<br>Theoretical and Applied Climatology, 2007, 88, 111-125.                                                           | 1.3 | 93        |
| 16 | Crop water stress maps for an entire growing season from visible and thermal UAV imagery.<br>Biogeosciences, 2016, 13, 6545-6563.                                                                                         | 1.3 | 86        |
| 17 | Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques. Geophysical Research Letters, 1997, 24, 3061-3064.                                         | 1.5 | 82        |
| 18 | A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1643-1656.                              | 1.6 | 76        |

THOMAS FRIBORG

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Seasonal carbon dioxide balance and respiration of a high-arctic fen ecosystem in NE-Greenland.<br>Theoretical and Applied Climatology, 2001, 70, 149-166.                                              | 1.3 | 73        |
| 20 | Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2289-2305.                       | 1.3 | 70        |
| 21 | Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.                                     | 3.7 | 69        |
| 22 | Trace gas exchange in a high-Arctic valley: 2. Landscape CH4fluxes measured and modeled using eddy correlation data. Global Biogeochemical Cycles, 2000, 14, 715-723.                                   | 1.9 | 68        |
| 23 | Observations and Status of Peatland Greenhouse Gas Emissions in Europe. Ecological Studies, 2008, , 243-261.                                                                                            | 0.4 | 68        |
| 24 | Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences, 2013, 10, 437-452.                                                                                             | 1.3 | 65        |
| 25 | Interpreting the variations in atmospheric methane fluxes observed above a restored wetland.<br>Agricultural and Forest Meteorology, 2011, 151, 841-853.                                                | 1.9 | 64        |
| 26 | Trends in CO <sub>2</sub> exchange in a high Arctic tundra heath, 2000–2010. Journal of Geophysical<br>Research, 2012, 117, .                                                                           | 3.3 | 63        |
| 27 | BVOC ecosystem flux measurements at a high latitude wetland site. Atmospheric Chemistry and Physics, 2010, 10, 1617-1634.                                                                               | 1.9 | 62        |
| 28 | Monitoring the Multi-Year Carbon Balance of a Subarctic Palsa Mire with Micrometeorological<br>Techniques. Ambio, 2012, 41, 207-217.                                                                    | 2.8 | 60        |
| 29 | Year-round CH <sub>4</sub> and<br>CO <sub>2</sub> flux dynamics in two contrasting freshwater ecosystems<br>of the subarctic. Biogeosciences, 2017, 14, 5189-5216.                                      | 1.3 | 55        |
| 30 | Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland. Biogeosciences, 2013, 10, 39-52.                                                      | 1.3 | 51        |
| 31 | Climateâ€ <del>S</del> ensitive Controls on Large Spring Emissions of CH <sub>4</sub> and CO <sub>2</sub> From Northern Lakes. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2379-2399. | 1.3 | 50        |
| 32 | Surface fluxes of heat and water vapour from sites in the European Arctic. Theoretical and Applied Climatology, 2001, 70, 19-33.                                                                        | 1.3 | 44        |
| 33 | Spatial and temporal variations in net carbon flux during HAPEX-Sahel. Journal of Hydrology, 1997, 188-189, 563-588.                                                                                    | 2.3 | 43        |
| 34 | Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models.<br>Biogeosciences, 2017, 14, 5143-5169.                                                          | 1.3 | 43        |
| 35 | ORCHIDEE-PEAT (revision 4596), a model for northern peatland<br>CO <sub>2</sub> , water, and energy fluxes on daily to annual scales.<br>Geoscientific Model Development, 2018, 11, 497-519.            | 1.3 | 43        |
| 36 | Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak.<br>Geophysical Research Letters, 2011, 38, n/a-n/a.                                                   | 1.5 | 42        |

THOMAS FRIBORG

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Energy Fluxes above Three Disparate Surfaces in a Temperate Mesoscale Coastal Catchment. Vadose<br>Zone Journal, 2011, 10, 54-66.                                                                                        | 1.3 | 41        |
| 38 | Arctic Vegetation Damage by Winter-Generated Coal Mining Pollution Released upon Thawing.<br>Environmental Science & Technology, 2007, 41, 2407-2413.                                                                    | 4.6 | 38        |
| 39 | Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 2016, 13, 597-608.                                                             | 1.3 | 37        |
| 40 | Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure,<br>local and regional advection. Journal of Hydrology, 2014, 517, 677-690.                                          | 2.3 | 36        |
| 41 | Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea-dominant wetland. Plant and Soil, 2011, 343, 287-301.                                                                       | 1.8 | 35        |
| 42 | Direct and indirect controls of the interannual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark. Agricultural and Forest Meteorology, 2017, 233, 12-31.                               | 1.9 | 35        |
| 43 | Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane<br>Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.                                                          | 1.9 | 34        |
| 44 | Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature<br>Communications, 2021, 12, 2266.                                                                                    | 5.8 | 34        |
| 45 | Highâ€Arctic Soil CO2 and CH4 Production Controlled by Temperature, Water, Freezing and Snow.<br>Advances in Ecological Research, 2008, 40, 441-472.                                                                     | 1.4 | 33        |
| 46 | Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.                      | 1.9 | 33        |
| 47 | Surface energy- and water balance in a high-arcticenvironment in NE Greenland. Theoretical and<br>Applied Climatology, 2001, 70, 35-51.                                                                                  | 1.3 | 31        |
| 48 | The biophysical climate mitigation potential of boreal peatlands during the growing season.<br>Environmental Research Letters, 2020, 15, 104004.                                                                         | 2.2 | 31        |
| 49 | Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture<br>Measurements. Vadose Zone Journal, 2011, 10, 78-83.                                                                          | 1.3 | 28        |
| 50 | Volatile organic compound fluxes in a subarctic peatland and lake. Atmospheric Chemistry and Physics, 2020, 20, 13399-13416.                                                                                             | 1.9 | 28        |
| 51 | UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk<br>assessment. Natural Hazards, 2022, 113, 423-451.                                                                      | 1.6 | 27        |
| 52 | Partitioning of forest evapotranspiration: The impact of edge effects and canopy structure.<br>Agricultural and Forest Meteorology, 2012, 166-167, 86-97.                                                                | 1.9 | 25        |
| 53 | Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997–2010 using<br>in situ and high-resolution satellite data. Tellus, Series B: Chemical and Physical Meteorology, 2013, 65,<br>19722. | 0.8 | 24        |
| 54 | Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland<br>(69°N). Agricultural and Forest Meteorology, 2019, 272-273, 176-186.                                                | 1.9 | 23        |

THOMAS FRIBORG

| #  | Article                                                                                                                                                                                                      | IF                | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 55 | Carbon dioxide flux, transpiration and light response of millet in the Sahel. Journal of Hydrology, 1997, 188-189, 633-650.                                                                                  | 2.3               | 20          |
| 56 | Assessing the spatial variability in peak season CO <sub>2</sub> exchange<br>characteristics across the Arctic tundra using a light response curve parameterization.<br>Biogeosciences, 2014, 11, 4897-4912. | 1.3               | 20          |
| 57 | Spatial and Interâ€Annual Variability of Trace Gas Fluxes in a Heterogeneous Highâ€Arctic Landscape.<br>Advances in Ecological Research, 2008, 40, 473-498.                                                  | 1.4               | 19          |
| 58 | Inference of spatial heterogeneity in surface fluxes from eddy covariance data: A case study from a subarctic mire ecosystem. Agricultural and Forest Meteorology, 2020, 280, 107783.                        | 1.9               | 17          |
| 59 | Catchmentâ€Wide Atmospheric Greenhouse Gas Exchange as Influenced by Land Use Diversity. Vadose<br>Zone Journal, 2011, 10, 67-77.                                                                            | 1.3               | 16          |
| 60 | Models of CO2 and water vapour fluxes from a sparse millet crop in the Sahel. Agricultural and Forest Meteorology, 1999, 93, 7-26.                                                                           | 1.9               | 14          |
| 61 | Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES) Tj ETQq1 1 0.7843                                                                                              | 814 rgBT /<br>1.3 | Oyerlock 10 |
| 62 | Deriving Aerodynamic Roughness Length at Ultra-High Resolution in Agricultural Areas Using<br>UAV-Borne LiDAR. Remote Sensing, 2021, 13, 3538.                                                               | 1.8               | 5           |
| 63 | Field-scale CH <sub>4</sub> emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.                                                                     | 1.3               | 5           |
| 64 | Modeling Canopy CO <sub>2</sub> Exchange in the European Russian Arctic. Arctic, Antarctic, and Alpine Research, 2013, 45, 50-63.                                                                            | 0.4               | 4           |
| 65 | Controls on the greenhouse gas exchange of a high-arctic ecosystem. Geografisk Tidsskrift, 1999, 99, 19-26                                                                                                   | 0.4               | 1           |