Zhengqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, Biochemical, and Antiviral Evaluations of C6 Benzyl and C6 Biarylmethyl Substituted 2-Hydroxylisoquinoline-1,3-diones: Dual Inhibition against HIV Reverse Transcriptase-Associated RNase H and Polymerase with Antiviral Activities. Journal of Medicinal Chemistry, 2015, 58, 651-664.	2.9	112
2	Rationally Designed Dual Inhibitors of HIV Reverse Transcriptase and Integrase. Journal of Medicinal Chemistry, 2007, 50, 3416-3419.	2.9	85
3	5′-Silylated 3′-1,2,3-triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. Journal of Medicinal Chemistry, 2015, 58, 4016-4028.	2.9	67
4	The design, synthesis and biological evaluations of C-6 or C-7 substituted 2-hydroxyisoquinoline-1,3-diones as inhibitors of hepatitis C virus. Bioorganic and Medicinal Chemistry, 2012, 20, 467-479.	1.4	66
5	Synthesis of Highly Substituted Cyclopentenones via the [4 + 1] Cycloaddition of Nucleophilic Carbenes and Vinyl Ketenes. Organic Letters, 2003, 5, 263-264.	2.4	64
6	Clicking 3′-Azidothymidine into Novel Potent Inhibitors of Human Immunodeficiency Virus. Journal of Medicinal Chemistry, 2013, 56, 8765-8780.	2.9	64
7	N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase. ACS Medicinal Chemistry Letters, 2011, 2, 63-67.	1.3	61
8	5-Arylidenethioxothiazolidinones as Inhibitors of Tyrosyl–DNA Phosphodiesterase I. Journal of Medicinal Chemistry, 2012, 55, 8671-8684.	2.9	56
9	3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase. Journal of Medicinal Chemistry, 2011, 54, 2282-2292.	2.9	54
10	Design, Synthesis, and Biological Evaluations of Hydroxypyridonecarboxylic Acids as Inhibitors of HIV Reverse Transcriptase Associated RNase H. Journal of Medicinal Chemistry, 2016, 59, 5051-5062.	2.9	54
11	Isoquinoline-1,3-diones as Selective Inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2). Journal of Medicinal Chemistry, 2016, 59, 2734-2746.	2.9	52
12	Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase: Introducing a diketoacid functionality into delavirdine. Bioorganic and Medicinal Chemistry, 2008, 16, 3587-3595.	1.4	50
13	[4 + 1] Cycloaddition of N-Heterocyclic Carbenes with Vinyl Isocyanates. Organic Letters, 2002, 4, 4289-4291.	2.4	44
14	Pharmacophore and structure–activity relationships of integrase inhibition within a dual inhibitor scaffold of HIV reverse transcriptase and integrase. Bioorganic and Medicinal Chemistry, 2010, 18, 4202-4211.	1.4	43
15	Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1293-1296.	1.0	40
16	3-Hydroxypyrimidine-2,4-dione-5- <i>N</i> -benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. Journal of Medicinal Chemistry, 2016, 59, 6136-6148.	2.9	40
17	3-Hydroxypyrimidine-2,4-diones as Selective Active Site Inhibitors of HIV Reverse Transcriptase-Associated RNase H: Design, Synthesis, and Biochemical Evaluations. Journal of Medicinal Chemistry, 2016, 59, 2648-2659.	2.9	39
18	Can remdesivir and its parent nucleoside GS-441524 be potential oral drugs? An inÂvitro and inÂvivo DMPK assessment. Acta Pharmaceutica Sinica B, 2021, 11, 1607-1616.	5.7	39

ZHENGQIANG WANG

#	Article	IF	CITATIONS
19	Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity. Journal of Medicinal Chemistry, 2017, 60, 5045-5056.	2.9	38
20	6-Benzoyl-3-hydroxypyrimidine-2,4-diones as dual inhibitors of HIV reverse transcriptase and integrase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2400-2402.	1.0	37
21	Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H. European Journal of Medicinal Chemistry, 2017, 141, 149-161.	2.6	36
22	Deazaflavin Inhibitors of Tyrosyl-DNA Phosphodiesterase 2 (TDP2) Specific for the Human Enzyme and Active against Cellular TDP2. ACS Chemical Biology, 2016, 11, 1925-1933.	1.6	32
23	Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nature Cancer, 2020, 1, 1113-1127.	5.7	32
24	Structural and Inhibition Studies of the RNase H Function of Xenotropic Murine Leukemia Virus-Related Virus Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2012, 56, 2048-2061.	1.4	31
25	Scaffold rearrangement of dihydroxypyrimidine inhibitors of HIV integrase: Docking model revisited. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3275-3279.	1.0	28
26	6-Biphenylmethyl-3-hydroxypyrimidine-2,4-diones potently and selectively inhibited HIV reverse transcriptase-associated RNase H. European Journal of Medicinal Chemistry, 2018, 156, 680-691.	2.6	28
27	6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity. European Journal of Medicinal Chemistry, 2018, 156, 652-665.	2.6	27
28	Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Accounts of Chemical Research, 2020, 53, 218-230.	7.6	27
29	Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology, 2021, 18, 41.	0.9	27
30	Synthesis and antiviral evaluation of 4′-(1,2,3-triazol-1-yl)thymidines. MedChemComm, 2014, 5, 603-608.	3.5	26
31	Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. European Journal of Medicinal Chemistry, 2017, 133, 85-96.	2.6	23
32	Inhibition of Human Cytomegalovirus pUL89 Terminase Subunit Blocks Virus Replication and Genome Cleavage. Journal of Virology, 2017, 91, .	1.5	23
33	Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. European Journal of Medicinal Chemistry, 2019, 166, 390-399.	2.6	22
34	Novel PF74-like small molecules targeting the HIV-1 capsid protein: Balance of potency and metabolic stability. Acta Pharmaceutica Sinica B, 2021, 11, 810-822.	5.7	22
35	6-Cyclohexylmethyl-3-hydroxypyrimidine-2,4-dione as an inhibitor scaffold of HIV reverase transcriptase: Impacts of the 3-OH on inhibiting RNase H and polymerase. European Journal of Medicinal Chemistry, 2017, 128, 168-179.	2.6	21
36	The Heteroaryldihydropyrimidine Bay 38-7690 Induces Hepatitis B Virus Core Protein Aggregates Associated with Promyelocytic Leukemia Nuclear Bodies in Infected Cells. MSphere, 2018, 3, .	1.3	21

ZHENGQIANG WANG

#	Article	IF	CITATIONS
37	Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection. Cell Death and Disease, 2020, 11, 196.	2.7	21
38	Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 257-261.	1.0	20
39	Toward Structurally Novel and Metabolically Stable HIV-1 Capsid-Targeting Small Molecules. Viruses, 2020, 12, 452.	1.5	20
40	3-Hydroxypyrimidine-2,4-Diones as Novel Hepatitis B Virus Antivirals Targeting the Viral Ribonuclease H. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	19
41	Metal-chelating 3-hydroxypyrimidine-2,4-diones inhibit human cytomegalovirus pUL89 endonuclease activity and virus replication. Antiviral Research, 2018, 152, 10-17.	1.9	19
42	A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
43	Hydroxypyridonecarboxylic Acids as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease. ChemMedChem, 2018, 13, 1658-1663.	1.6	17
44	5-Aminothiophene-2,4-dicarboxamide analogues as hepatitis B virus capsid assembly effectors. European Journal of Medicinal Chemistry, 2019, 164, 179-192.	2.6	17
45	C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus. Bioorganic and Medicinal Chemistry, 2012, 20, 4790-4800.	1.4	16
46	Chemical profiling of HIV-1 capsid-targeting antiviral PF74. European Journal of Medicinal Chemistry, 2020, 200, 112427.	2.6	16
47	Novel deazaflavin tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. DNA Repair, 2020, 85, 102747.	1.3	15
48	The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release. Journal of Biological Chemistry, 2018, 293, 7969-7981.	1.6	14
49	New fluorescence-based high-throughput screening assay for small molecule inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2). European Journal of Pharmaceutical Sciences, 2018, 118, 67-79.	1.9	14
50	Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. European Journal of Medicinal Chemistry, 2020, 204, 112626.	2.6	14
51	Discovery of New Small Molecule Hits as Hepatitis B Virus Capsid Assembly Modulators: Structure and Pharmacophore-Based Approaches. Viruses, 2021, 13, 770.	1.5	14
52	Novel Deazaflavin Analogues Potently Inhibited Tyrosyl DNA Phosphodiesterase 2 (TDP2) and Strongly Sensitized Cancer Cells toward Treatment with Topoisomerase II (TOP2) Poison Etoposide. Journal of Medicinal Chemistry, 2019, 62, 4669-4682.	2.9	13
53	Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infectious Diseases, 2019, 5, 750-758.	1.8	13
54	Design, Synthesis and Characterization of HIV-1 CA-Targeting Small Molecules: Conformational Restriction of PF74. Viruses, 2021, 13, 479.	1.5	11

ZHENGQIANG WANG

#	Article	IF	CITATIONS
55	Molecular Dynamics Free Energy Simulations Reveal the Mechanism for the Antiviral Resistance of the M661 HIV-1 Capsid Mutation. Viruses, 2021, 13, 920.	1.5	11
56	Determinants of Active-Site Inhibitor Interaction with HIV-1 RNase H. ACS Infectious Diseases, 2019, 5, 1963-1974.	1.8	10
57	4-benzylideneisoquinoline-1,3(2H,4H)-diones as tyrosyl DNA phosphodiesterase 2 (TDP2) inhibitors. Medicinal Chemistry Research, 2021, 30, 371-386.	1.1	6
58	Discovery of N-benzyl hydroxypyridone carboxamides as a novel and potent antiviral chemotype against human cytomegalovirus (HCMV). Acta Pharmaceutica Sinica B, 2021, , .	5.7	5
59	Metal binding 6-arylthio-3-hydroxypyrimidine-2,4-diones inhibited human cytomegalovirus by targeting the pUL89 endonuclease of the terminase complex. European Journal of Medicinal Chemistry, 2021, 222, 113640.	2.6	5
60	4,5-Dihydroxypyrimidine Methyl Carboxylates, Carboxylic Acids, and Carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease. Journal of Medicinal Chemistry, 2022, 65, 5830-5849.	2.9	4
61	Challenges and Opportunities in Hepatitis B Research. ACS Infectious Diseases, 2019, 5, 652-654.	1.8	1
62	Potency and metabolic stability: a molecular hybrid case in the design of novel PF74-like small molecules targeting HIV-1 capsid protein. RSC Medicinal Chemistry, 2021, 12, 2031-2044.	1.7	1
63	[4 + 1] Cycloaddition of N-Heterocyclic Carbenes with Vinyl Isocyanates ChemInform, 2003, 34, no.	0.1	0
64	Synthesis of Highly Substituted Cyclopentenones via the [4 + 1] Cycloaddition of Nucleophilic Carbenes and Vinyl Ketenes ChemInform, 2003, 34, no.	0.1	0
65	In honor of Professor Robert Vince on the occasion of his 80th birthday. Medicinal Chemistry Research, 2021, 30, 303-304.	1.1	0