Massimo Bagnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3030229/publications.pdf Version: 2024-02-01

MASSIMO RACNANI

#	Article	IF	CITATIONS
1	Turning Food Protein Waste into Sustainable Technologies. Chemical Reviews, 2023, 123, 2112-2154.	47.7	58
2	Renewable Water Harvesting by Amyloid Aerogels and Sun. Advanced Sustainable Systems, 2022, 6, 2100309.	5.3	13
3	Shape and structural relaxation of colloidal tactoids. Nature Communications, 2022, 13, 2778.	12.8	7
4	Amyloid-based carbon aerogels for water purification. Chemical Engineering Journal, 2022, 449, 137703.	12.7	21
5	Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies. Soft Matter, 2021, 17, 2158-2169.	2.7	12
6	Liquid–liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order–order transitions of cholesteric tactoids. Soft Matter, 2021, 17, 6627-6636.	2.7	21
7	Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale, 2021, 13, 12534-12545.	5.6	19
8	Sustainable Removal of Microplastics and Natural Organic Matter from Water by Coagulation–Flocculation with Protein Amyloid Fibrils. Environmental Science & Technology, 2021, 55, 8848-8858.	10.0	67
9	Sustainable Bioplastics from Amyloid Fibril-Biodegradable Polymer Blends. ACS Sustainable Chemistry and Engineering, 2021, 9, 11916-11926.	6.7	36
10	Hierarchically Fabricated Amyloid Fibers <i>via</i> Evaporation-Induced Self-Assembly. ACS Nano, 2021, 15, 20261-20266.	14.6	8
11	Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids. Nature Communications, 2020, 11, 5416.	12.8	20
12	Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to cylindrical geometry. Nature Communications, 2020, 11, 4616.	12.8	32
13	Interfaces Determine the Fate of Seeded α‣ynuclein Aggregation. Advanced Materials Interfaces, 2020, 7, 2000446.	3.7	7
14	Airâ€Water Interfaces: Interfaces Determine the Fate of Seeded α‣ynuclein Aggregation (Adv. Mater.) Tj ETQo	0.0 rgB	T /Overlock 1
15	Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules, 2020, 53, 5950-5956.	4.8	13
16	Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9832-9839.	7.1	32
17	Six-fold director field configuration in amyloid nematic and cholesteric phases. Scientific Reports, 2019, 9, 12654.	3.3	18

¹⁸Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains.
Langmuir, 2019, 35, 4117-4124.3.546

#	Article	IF	CITATIONS
19	Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids. ACS Nano, 2019, 13, 591-600.	14.6	68