Boubacar Kanté

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302976/publications.pdf

Version: 2024-02-01

		218677	1	89892
58	3,430	26		50
papers	citations	h-index		g-index
59	59	59		3555
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Tunable and enhanced optical force with bound state in the continuum. Optics Letters, 2022, 47, 1774.	3.3	5
2	Exploration of Defect Dynamics and Color Center Qubit Synthesis with Pulsed Ion Beams. Quantum Beam Science, 2022, $6,13.$	1.2	4
3	Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature, 2022, 608, 692-698.	27.8	45
4	Single-mode Topological Valley-Hall Lasing Controlled by the Degree of Asymmetry at Telecommunication Wavelength. , $2021, \dots$		O
5	Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta. Nature Physics, 2021, 17, 700-703.	16.7	63
6	Plasmonic topological metasurface by encircling an exceptional point. Science, 2021, 373, 1133-1137.	12.6	124
7	Octave bandwidth photonic fishnet-achromatic-metalens. Nature Communications, 2020, 11, 3205.	12.8	108
8	Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nature Physics, 2020, 16, 462-468.	16.7	178
9	Doping-induced plateau of strong electromagnetic confinement in the momentum space. Optics Letters, 2020, 45, 3653.	3.3	3
10	Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry. Optics Letters, 2020, 45, 4108.	3.3	38
11	Active topological photonics. Nanophotonics, 2020, 9, 547-567.	6.0	170
12	Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum. Nanophotonics, 2020, 9, 1081-1086.	6.0	54
13	Single-mode Topological Valley-Hall lasing at Telecommunication Wavelength. , 2020, , .		O
14	Experimental Demonstration of Single-mode Topological Valley-Hall Lasing at Telecommunication Wavelength. , 2020, , .		0
15	Experimental Demonstration of Single-mode Topological Valley-Hall Lasing Controlled by the Degree of Asymmetry. , 2020, , .		O
16	Experimental Demonstration of Topological Valley-Hall lasing at Telecommunication Wavelength. , 2020, , .		0
17	Optical response of jammed rectangular nanostructures. Nanophotonics, 2020, 10, 705-711.	6.0	2
18	Broadband and linear polarization metasurface carpet cloak in the visible. Optics Letters, 2019, 44, 2978.	3.3	18

#	Article	lF	Citations
19	Self-Suspended Microdisk Lasers with Mode Selectivity by Manipulating the Spatial Symmetry of Whispering Gallery Modes. ACS Photonics, 2019, 6, 389-394.	6.6	20
20	Lasing action in low-resistance nanolasers based on tunnel junctions. Optics Letters, 2019, 44, 3669.	3.3	9
21	A Novel Phase-Map to Increase the Efficiency of Random Metasurfaces. , 2019, , .		0
22	Non-reciprocal lasing action in topological cavities of arbitrary geometries. , 2019, , .		0
23	Planar dielectric cylindrical lens at 800 nm and the role of fabrication imperfections. Optics Express, 2018, 26, 23178.	3.4	12
24	On the design of random metasurface based devices. Scientific Reports, 2018, 8, 7162.	3.3	28
25	Integration of Nanomaterials into Three-Dimensional Vertical Architectures. ACS Applied Materials & amp; Interfaces, 2018, 10, 28262-28268.	8.0	2
26	Efficient design of random metasurfaces. Optics Letters, 2018, 43, 5829.	3.3	13
27	Lasing action from photonic bound states in continuum. Nature, 2017, 541, 196-199.	27.8	819
28	Nonreciprocal lasing in topological cavities of arbitrary geometries. Science, 2017, 358, 636-640.	12.6	536
29	Hybridized metamaterial platform for nano-scale sensing. Optics Express, 2017, 25, 15590.	3.4	14
30	Local phase method for designing and optimizing metasurface devices. Optics Express, 2017, 25, 24974.	3.4	41
31	Mechanically stable conjugate and suspended lasing membranes of bridged nano-cylinders. Optical Materials Express, 2017, 7, 2980.	3.0	3
32	From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit. Optics Letters, 2017, 42, 1520.	3.3	12
33	Optical Nanoscopy using Swimming Spherical Lens. , 2017, , .		0
34	Exceptional Points in Hybridized Plasmonic Systems., 2017,,.		0
35	Integrated metaphotonics: symmetries and confined excitation of LSP resonances in a single metallic nanoparticle. Optics Express, 2016, 24, 13875.	3.4	9
36	Swimming Microrobot Optical Nanoscopy. Nano Letters, 2016, 16, 6604-6609.	9.1	93

#	Article	IF	CITATIONS
37	Exceptional points in three-dimensional plasmonic nanostructures. Physical Review B, 2016, 94, .	3.2	27
38	EXTREMELY THIN DIELECTRIC METASURFACE FOR CARPET CLOAKING. Progress in Electromagnetics Research, 2015, 152, 33-40.	4.4	76
39	Multipoles of Even/Odd Split-Ring Resonators. Photonics, 2015, 2, 883-892.	2.0	5
40	Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials. Optical Materials Express, 2015, 5, 2300.	3.0	18
41	Predicting nonlinear properties of metamaterials from the linear response. Nature Materials, 2015, 14, 379-383.	27.5	243
42	Engineering resonance dynamics of plasmon hybridized systems. Journal of Applied Physics, 2015, 117, 023110.	2.5	9
43	Metamaterial quasi-phase matching. Nature Photonics, 2015, 9, 148-150.	31.4	8
44	Cram \tilde{A} @r-Rao bounds for determination of electric and magnetic susceptibilities in metasurfaces. Optics Express, 2015, 23, 3460.	3.4	5
45	Simultaneous Stokes parameters. Nature Photonics, 2015, 9, 709-710.	31.4	16
46	Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies. Optics Express, 2014, 22, 21088.	3.4	27
47	Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Physical Review B, 2014 , 90 , .	3.2	94
48	Near field imaging of refraction via the magnetic field. Applied Physics Letters, 2014, 104, 021909.	3.3	3
49	Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution. Nature Nanotechnology, 2014, 9, 1002-1006.	31.5	79
50	Reflective interferometry for optical metamaterial phase measurements. Optics Letters, 2012, 37, 4089.	3.3	31
51	Symmetry breaking and optical negative index of closed nanorings. Nature Communications, 2012, 3, 1180.	12.8	68
52	Proposed isotropic negative index in three-dimensional optical metamaterials. Physical Review B, 2012, 85, .	3.2	20
53	Heterojunction Silicon Microwire Solar Cells. Nano Letters, 2012, 12, 6278-6282.	9.1	95
54	Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index. Applied Physics Letters, 2009, 94, 201111.	3.3	42

BOUBACAR KANTé

#	Article	lF	CITATIONS
55	Negative refractive index metamaterials using only metallic cut wires. Optics Express, 2009, 17, 6301.	3.4	31
56	Infrared metafilms on a dielectric substrate. Physical Review B, 2009, 80, .	3.2	18
57	Engineering resonances in infrared metamaterials. Optics Express, 2008, 16, 6774.	3.4	29
58	Infrared cloaking based on the electric response of split ring resonators. Optics Express, 2008, 16, 9191.	3 . 4	62