Annemarie H Meijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029716/publications.pdf

Version: 2024-02-01

44069 60623 7,598 115 48 81 citations h-index g-index papers 135 135 135 10435 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Molecular Immunology, 2004, 40, 773-783.	2.2	477
2	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	4.2	282
3	Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Current Drug Targets, 2011, 12, 1000-1017.	2.1	232
4	Transcriptome Profiling and Functional Analyses of the Zebrafish Embryonic Innate Immune Response to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 5641-5653.	0.8	214
5	Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Molecular Immunology, 2009, 46, 2918-2930.	2.2	203
6	Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens. Journal of Visualized Experiments, 2012, , .	0.3	176
7	Macrophage-specific gene functions in Spi1-directed innate immunity. Blood, 2010, 116, e1-e11.	1.4	172
8	MyD88 Innate Immune Function in a Zebrafish Embryo Infection Model. Infection and Immunity, 2006, 74, 2436-2441.	2.2	169
9	Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish. Advances in Hematology, 2012, 2012, 1-19.	1.0	157
10	Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. DMM Disease Models and Mechanisms, 2014, 7, 785-797.	2.4	153
11	The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLR-MYD88 to Autophagic Defense. Cell Host and Microbe, 2014, 15, 753-767.	11.0	147
12	Functional analysis of a zebrafish <i>myd88</i> mutant identifies key transcriptional components of the innate immune system. DMM Disease Models and Mechanisms, 2013, 6, 841-54.	2.4	145
13	Discovery of a Functional Glucocorticoid Receptor \hat{l}^2 -Isoform in Zebrafish. Endocrinology, 2008, 149, 1591-1599.	2.8	144
14	Zebrafish development and regeneration: new tools for biomedical research. International Journal of Developmental Biology, 2009, 53, 835-850.	0.6	143
15	Pattern formation in the vascular system of monocot and dicot plant species. New Phytologist, 2004, 164, 209-242.	7. 3	136
16	Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 2005, 42, 1185-1203.	2.2	129
17	Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism. PLoS Pathogens, 2013, 9, e1003789.	4.7	129
18	The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. DMM Disease Models and Mechanisms, 2015, 8, 253-69.	2.4	129

#	Article	IF	CITATIONS
19	Nanoparticles as Drug Delivery System against Tuberculosis in Zebrafish Embryos: Direct Visualization and Treatment. ACS Nano, 2014, 8, 7014-7026.	14.6	128
20	Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Developmental and Comparative Immunology, 2008, 32, 36-49.	2.3	124
21	<i>Burkholderia cenocepacia</i> Creates an Intramacrophage Replication Niche in Zebrafish Embryos, Followed by Bacterial Dissemination and Establishment of Systemic Infection. Infection and Immunity, 2010, 78, 1495-1508.	2.2	121
22	Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.	2.7	113
23	Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Molecular Immunology, 2009, 46, 2317-2332.	2.2	112
24	Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development (Cambridge), 2015, 142, 2136-2146.	2.5	111
25	MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics, 2013, 14, 696.	2.8	110
26	Protection and pathology in TB: learning from the zebrafish model. Seminars in Immunopathology, 2016, 38, 261-273.	6.1	104
27	Macrophage-Expressed Perforins Mpeg1 and Mpeg1.2 Have an Anti-Bacterial Function in Zebrafish. Journal of Innate Immunity, 2015, 7, 136-152.	3.8	102
28	A High-Throughput Screen for Tuberculosis Progression. PLoS ONE, 2011, 6, e16779.	2.5	101
29	Infectious Disease Modeling and Innate Immune Function in Zebrafish Embryos. Methods in Cell Biology, 2011, 105, 273-308.	1.1	86
30	Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunology, 2011, 12, 58.	2.2	85
31	Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods, 2013, 62, 246-254.	3.8	84
32	Macrophages target <i>Salmonella</i> by Lc3-associated phagocytosis in a systemic infection model. Autophagy, 2019, 15, 796-812.	9.1	82
33	Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish and Shellfish Immunology, 2011, 31, 716-724.	3.6	79
34	RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. Frontiers in Immunology, 2019, 10, 832.	4.8	76
35	Comparative studies of Toll-like receptor signalling using zebrafish. Developmental and Comparative Immunology, 2014, 46, 35-52.	2.3	75
36	Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. DMM Disease Models and Mechanisms, $2019,12,12$	2.4	68

#	Article	IF	CITATIONS
37	Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology, 2016, 157, 2772-2784.	2.8	67
38	Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development (Cambridge), 2018, 145, .	2.5	64
39	Hif-1α–Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish. Journal of Immunology, 2019, 202, 494-502.	0.8	64
40	Deficiency in Hematopoietic Phosphatase Ptpn6/Shp1 Hyperactivates the Innate Immune System and Impairs Control of Bacterial Infections in Zebrafish Embryos. Journal of Immunology, 2013, 190, 1631-1645.	0.8	60
41	Studying Autophagy in Zebrafish. Cells, 2017, 6, 21.	4.1	59
42	Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Frontiers in Cell and Developmental Biology, 2020, 8, 620984.	3.7	59
43	Macrophages, but not neutrophils, are critical for proliferation of Burkholderia cenocepacia and ensuing host-damaging inflammation. PLoS Pathogens, 2017, 13, e1006437.	4.7	58
44	A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics, 2013, 14, 255.	2.8	57
45	Cellular Visualization of Macrophage Pyroptosis and Interleukin- \hat{l}^2 Release in a Viral Hemorrhagic Infection in Zebrafish Larvae. Journal of Virology, 2014, 88, 12026-12040.	3.4	57
46	Transcriptional and Metabolic Effects of Glucocorticoid Receptor \hat{l}_{\pm} and \hat{l}^{2} Signaling in Zebrafish. Endocrinology, 2015, 156, 1757-1769.	2.8	57
47	Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. DMM Disease Models and Mechanisms, 2015, 8, 1349-1360.	2.4	57
48	Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Molecular Immunology, 2010, 48, 179-190.	2.2	55
49	Modeling Infectious Diseases in the Context of a Developing Immune System. Current Topics in Developmental Biology, 2017, 124, 277-329.	2.2	55
50	The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection. PLoS Pathogens, 2019, 15, e1007329.	4.7	53
51	ZebraFISH: Fluorescent In Situ Hybridization Protocol and Three-Dimensional Imaging of Gene Expression Patterns. Zebrafish, 2006, 3, 465-476.	1.1	52
52	Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen. Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.	3.2	52
53	The Difference between White and Red Ginseng: Variations in Ginsenosides and Immunomodulation. Planta Medica, 2018, 84, 845-854.	1.3	52
54	Genomic annotation and expression analysis of the zebrafish Rho small GTPase family during development and bacterial infection. Genomics, 2005, 86, 25-37.	2.9	51

#	Article	IF	Citations
55	Mesoporous silica nanoparticles as a compound delivery system in zebrafish embryos. International Journal of Nanomedicine, 2012, 7, 1875.	6.7	51
56	Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy, 2014, 10, 1844-1857.	9.1	49
57	The autophagic response to <i>Staphylococcus aureus</i> provides an intracellular niche in neutrophils. Autophagy, 2021, 17, 888-902.	9.1	49
58	CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Scientific Reports, 2019, 9, 2399.	3.3	46
59	Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. Developmental and Comparative Immunology, 2014, 47, 223-233.	2.3	44
60	<i>InÂvivo</i> inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activityâ€based protein profiling. FEBS Journal, 2019, 286, 584-600.	4.7	44
61	The inflammatory chemokine Cxcl18b exerts neutrophil-specific chemotaxis via the promiscuous chemokine receptor Cxcr2 in zebrafish. Developmental and Comparative Immunology, 2017, 67, 57-65.	2.3	42
62	Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Molecular Immunology, 2015, 63, 381-393.	2.2	41
63	Chemokine Receptors and Phagocyte Biology in Zebrafish. Frontiers in Immunology, 2020, 11, 325.	4.8	40
64	RNA Sequencing of FACS-Sorted Immune Cell Populations from Zebrafish Infection Models to Identify Cell Specific Responses to Intracellular Pathogens. Methods in Molecular Biology, 2014, 1197, 261-274.	0.9	40
65	Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter, 2010, 6, 3778.	2.7	39
66	Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS ONE, 2018, 13, e0199248.	2.5	38
67	Mycobacteria Counteract a TLR-Mediated Nitrosative Defense Mechanism in a Zebrafish Infection Model. PLoS ONE, 2014, 9, e100928.	2.5	35
68	Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Frontiers in Immunology, 2020, 11, 36.	4.8	34
69	Transcriptomic Approaches in the Zebrafish Model for Tuberculosis—Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response. Advances in Genetics, 2016, 95, 217-251.	1.8	32
70	Zebrafish in Inflammasome Research. Cells, 2019, 8, 901.	4.1	32
71	Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cellular Microbiology, 2014, 16, 39-49.	2.1	31
72	The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. Scientific Reports, 2017, 7, 45061.	3.3	31

#	Article	IF	Citations
73	Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish. Journal of Leukocyte Biology, 2020, 107, 185-203.	3.3	31
74	Efferocytosis and extrusion of leukocytes determine the progression of early mycobacterial pathogenesis. Journal of Cell Science, 2016, 129, 3385-95.	2.0	30
75	Role of $\hat{l}^{1}\!\!/\!\!4$ -glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. Journal of Lipid Research, 2019, 60, 1851-1867.	4.2	29
76	Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish. BMC Genomics, 2015, 16, 547.	2.8	28
77	Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death and Disease, 2020, 11, 277.	6.3	27
78	Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Molecular Biology, 2004, 55, 781-796.	3.9	26
79	Aryl Hydrocarbon Receptor Modulation by Tuberculosis Drugs Impairs Host Defense and Treatment Outcomes. Cell Host and Microbe, 2020, 27, 238-248.e7.	11.0	26
80	Expression and regulation of drug transporters in vertebrate neutrophils. Scientific Reports, 2017, 7, 4967.	3.3	22
81	The embryonic expression patterns of zebrafish genes encoding LysM-domains. Gene Expression Patterns, 2013, 13, 212-224.	0.8	21
82	Establishment and Optimization of a High Throughput Setup to Study Staphylococcus epidermidis and Mycobacterium marinum Infection as a Model for Drug Discovery. Journal of Visualized Experiments, 2014, , e51649.	0.3	21
83	Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics, 2019, 20, 878.	2.8	21
84	Autophagy and Lc3-Associated Phagocytosis in Zebrafish Models of Bacterial Infections. Cells, 2020, 9, 2372.	4.1	21
85	Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae. Cells, 2020, 9, 1107.	4.1	21
86	Deep learning image recognition enables efficient genome editing in zebrafish by automated injections. PLoS ONE, 2019, 14, e0202377.	2.5	20
87	Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. ELife, 2019, 8, .	6.0	20
88	DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy, 2014, 10, 2389-2391.	9.1	19
89	Ultrastructural Imaging of <i>Salmonella</i> li>â€"Host Interactions Using Superâ€resolution Correlative Lightâ€Electron Microscopy of Bioorthogonal Pathogens. ChemBioChem, 2018, 19, 1766-1770.	2.6	19
90	Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination. Scientific Reports, 2019, 9, 12791.	3.3	19

#	Article	IF	Citations
91	Functional analysis reveals no transcriptional role for the glucocorticoid receptor \hat{l}^2 -isoform in zebrafish. Molecular and Cellular Endocrinology, 2017, 447, 61-70.	3.2	18
92	Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathogens, 2017, 13, e1006526.	4.7	18
93	Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression. Frontiers in Genetics, 2018, 9, 675.	2.3	18
94	Rubicon-Dependent Lc3 Recruitment to Salmonella-Containing Phagosomes Is a Host Defense Mechanism Triggered Independently From Major Bacterial Virulence Factors. Frontiers in Cellular and Infection Microbiology, 2019, 9, 279.	3.9	18
95	Modeling Innate Immune Response to Early <i>Mycobacterium</i> Infection. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-12.	1.3	17
96	Imaging of Human Cancer Cell Proliferation, Invasion, and Micrometastasis in a Zebrafish Xenogeneic Engraftment Model. Methods in Molecular Biology, 2016, 1451, 155-169.	0.9	17
97	Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics. Immunogenetics, 2015, 67, 135-147.	2.4	15
98	A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced \hat{l} ±-glucan or galactomannan. Cell Surface, 2020, 6, 100039.	3.0	15
99	Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC Research Notes, 2013, 6, 428.	1.4	14
100	Glucocorticoid-Induced Exacerbation of Mycobacterial Infection Is Associated With a Reduced Phagocytic Capacity of Macrophages. Frontiers in Immunology, 2021, 12, 618569.	4.8	14
101	LAPped in Proof: LC3â€Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 2021, 11, 809121.	3.9	14
102	Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification. BMC Research Notes, 2011, 4, 196.	1.4	12
103	Inhibition of macrophage migration in zebrafish larvae demonstrates in vivo efficacy of human CCR2 inhibitors. Developmental and Comparative Immunology, 2021, 116, 103932.	2.3	12
104	A fresh look at mycobacterial pathogenicity with the zebrafish host model. Molecular Microbiology, 2022, 117, 661-669.	2.5	12
105	Linking Smokers' Susceptibility to Tuberculosis with Lysosomal Storage Disorders. Developmental Cell, 2016, 37, 112-113.	7.0	9
106	Variation of virulence of five Aspergillus fumigatus isolates in four different infection models. PLoS ONE, 2021, 16, e0252948.	2.5	9
107	Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish Journal of Lipid Research, 2022, , 100199.	4.2	9
108	Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms, 2020, 8, 1918.	3.6	5

#	Article	IF	CITATIONS
109	The adapter protein Myd88 plays an important role in limiting mycobacterial growth in a zebrafish model for tuberculosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 265-275.	2.8	5
110	HI-NESS: a family of genetically encoded DNA labels based on a bacterial nucleoid-associated protein. Nucleic Acids Research, 2022, 50, e10-e10.	14.5	4
111	Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy, 2023, 19, 324-337.	9.1	4
112	Disruption of Cxcr3 chemotactic signaling alters lysosomal function and renders macrophages more microbicidal. Cell Reports, 2021, 35, 109000.	6.4	3
113	A quantitative in vivo assay for craniofacial developmental toxicity of histone deacetylases. Toxicology Letters, 2021, 342, 20-25.	0.8	3
114	Macrophages as drivers of an opportunistic infection. Microbial Cell, 2017, 4, 362-364.	3.2	2
115	COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies. Journal of Proteome Research, 2018, 17, 739-744.	3.7	1