Thom Bogaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029695/publications.pdf

Version: 2024-02-01

61 papers 2,885 citations

26 h-index 52 g-index

90 all docs 90 docs citations

90 times ranked 3692 citing authors

#	Article	IF	CITATIONS
1	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
2	What can flux tracking teach us about water age distribution patterns and their temporal dynamics?. Hydrology and Earth System Sciences, 2013, 17, 533-564.	1.9	217
3	Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Science Reviews, 2016, 159, 275-291.	4.0	192
4	Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds. Natural Hazards and Earth System Sciences, 2018, 18, 31-39.	1.5	168
5	Uncertainties in transpiration estimates. Nature, 2014, 506, E1-E2.	13.7	157
6	Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resources Research, 2010, 46, .	1.7	130
7	On the reproducibility and repeatability of laser absorption spectroscopy measurements for Î ² H and Î ¹⁸ O isotopic analysis. Hydrology and Earth System Sciences, 2010, 14, 1551-1566.	1.9	116
8	Problems in predicting the mobility of slow-moving landslides. Engineering Geology, 2007, 91, 46-55.	2.9	114
9	Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling and Software, 2020, 124, 104607.	1.9	87
10	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	1.9	83
11	Technical Note: Evaluation of between-sample memory effects in the analysis of I' ² H and I' ¹⁸ O of water samples measured by laser spectroscopes. Hydrology and Earth System Sciences, 2012, 16, 3925-3933.	1.9	78
12	On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area. Hydrology and Earth System Sciences, 2011, 15, 2007-2024.	1.9	72
13	Quantification of the influence of preferential flow on slope stability using a numerical modelling approach. Hydrology and Earth System Sciences, 2015, 19, 2197-2212.	1.9	65
14	Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a firstâ€order stream. Water Resources Research, 2011, 47, .	1.7	57
15	A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide. Hydrology and Earth System Sciences, 2013, 17, 947-959.	1.9	53
16	Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Natural Hazards and Earth System Sciences, 2018, 18, 633-646.	1.5	53
17	Natural Pollution Caused by the Extremely Acid Crater Lake Kawah Ijen, East Java, Indonesia (7 pp). Environmental Science and Pollution Research, 2005, 12, 89-95.	2.7	49
18	Hydrogeochemistry in landslide research: a review. Bulletin - Societie Geologique De France, 2007, 178, 113-126.	0.9	49

#	Article	IF	CITATIONS
19	The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Natural Hazards and Earth System Sciences, 2009, 9, 739-749.	1.5	46
20	A conceptual model of the hydrological influence of fissures on landslide activity. Hydrology and Earth System Sciences, 2012, 16, 1561-1576.	1.9	44
21	Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring. Hydrology and Earth System Sciences, 2012, 16, 4205-4221.	1.9	37
22	The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide. Journal of Hydrology, 2016, 543, 360-372.	2.3	37
23	The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surface Processes and Landforms, 2002, 27, 1177-1188.	1.2	35
24	Development of a methodology for the application of synthetic DNA in stream tracer injection experiments. Water Resources Research, 2013, 49, 5369-5380.	1.7	30
25	Quantifying the effect of in-stream rock clasts on the retardation of heat along a stream. Advances in Water Resources, 2010, 33, 1417-1425.	1.7	29
26	How to Use COMSOL Multiphysics for Coupled Dual-permeability Hydrological and Slope Stability Modeling. Procedia Earth and Planetary Science, 2014, 9, 83-90.	0.6	28
27	Hydrological and hydrochemical processes observed during a largeâ€scale infiltration experiment at the Superâ€Sauze mudslide (France). Hydrological Processes, 2012, 26, 2157-2170.	1.1	26
28	Highâ€resolution temperature observations to monitor soil thermal properties as a proxy for soil moisture condition in clayâ€shale landslide. Hydrological Processes, 2012, 26, 2143-2156.	1.1	26
29	A Rugged FBG-Based Pressure Sensor for Water Level Monitoring in Dikes. IEEE Sensors Journal, 2021, 21, 13263-13271.	2.4	22
30	Non-invasive estimation of moisture content in tuff bricks by GPR. Construction and Building Materials, 2018, 160, 698-706.	3.2	19
31	Dualâ€Permeability Model Improvements for Representation of Preferential Flow in Fractured Clays. Water Resources Research, 2020, 56, e2020WR027304.	1.7	19
32	Quantifying spatial and temporal discharge dynamics of an event in a first order stream, using distributed temperature sensing. Hydrology and Earth System Sciences, 2011, 15, 1945-1957.	1.9	18
33	Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments. Earth Surface Dynamics, 2014, 2, 181-195.	1.0	17
34	Overview of Landslide Hydrology. Water (Switzerland), 2019, 11, 148.	1.2	17
35	Characterization of groundwater dynamics in landslides in varved clays. Hydrology and Earth System Sciences, 2013, 17, 2171-2183.	1.9	15
36	Identifying hydrological pre-conditions and rainfall triggers of slope failures at catchment scale for 2014 storm events in the Ialomita Subcarpathians, Romania. Landslides, 2017, 14, 419-434.	2.7	15

#	Article	IF	CITATIONS
37	Is there Predictive Power in Hydrological Catchment Information for Regional Landslide Hazard Assessment?. Procedia Earth and Planetary Science, 2016, 16, 195-203.	0.6	14
38	Non-invasive water content estimation in a tuff wall by DTS. Construction and Building Materials, 2019, 197, 821-829.	3.2	14
39	The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics. Sensors, 2017, 17, 2102.	2.1	13
40	The Urgent Need for River Health Biomonitoring Tools for Large Tropical Rivers in Developing Countries: Preliminary Development of a River Health Monitoring Tool for Myanmar Rivers. Water (Switzerland), 2020, 12, 1408.	1.2	13
41	A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides, 2022, 19, 2233-2247.	2.7	13
42	A Low-Cost Water Quality Monitoring System for the Ayeyarwady River in Myanmar Using a Participatory Approach. Water (Switzerland), 2019, 11, 1984.	1.2	11
43	Testing the potential of geochemical techniques for identifying hydrological systems within landslides in partly weathered marls. Geomorphology, 2004, 58, 323-338.	1.1	10
44	Aquatic Macroinvertebrate Community Changes Downstream of the Hydropower Generating Dams in Myanmar-Potential Negative Impacts From Increased Power Generation. Frontiers in Water, 2020, 2, .	1.0	9
45	Effects of Anisotropy of Preferential flow on the Hydrology and Stability of Landslides. Procedia Earth and Planetary Science, 2016, 16, 204-214.	0.6	8
46	Rainfall-runoff modelling using river-stage time series in the absence of reliable discharge information: a case study in the semi-arid Mara River basin. Hydrology and Earth System Sciences, 2018, 22, 5081-5095.	1.9	8
47	A transient backward erosion piping model based on laminar flow transport equations. Computers and Geotechnics, 2021, 132, 103992.	2.3	8
48	Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter. Hydrology and Earth System Sciences, 2022, 26, 775-794.	1.9	8
49	Smartphone applications for communicating avalanche risk information – a study on how they are developed and evaluated by their providers. Natural Hazards and Earth System Sciences, 2016, 16, 1175-1188.	1.5	6
50	Hydrological behaviour of unstable clayâ€shales slopes: the value of crossâ€disciplinary and multitechnological research at different scales. Hydrological Processes, 2012, 26, 2067-2070.	1.1	5
51	Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain catchments. Natural Hazards and Earth System Sciences, 2014, 14, 2681-2698.	1.5	5
52	Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation. Natural Hazards and Earth System Sciences, 2022, 22, 2219-2237.	1.5	5
53	The impact of an exhibition on risk awareness of the general public in mountainous areas. International Journal of Disaster Risk Reduction, 2017, 25, 36-59.	1.8	4
54	Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda. Natural Hazards and Earth System Sciences, 2022, 22, 1723-1742.	1.5	4

#	Article	IF	CITATIONS
55	Design and field testing of a fiber optic pressure sensor for underground water level monitoring. , $2019,$		3
56	Characterization and Hydrological Analysis of the Guarumales Deep-Seated Landslide in the Tropical Ecuadorian Andes. Geosciences (Switzerland), 2020, 10, 267.	1.0	2
57	Sprinkling Tests to Understand Hydrological Behaviour of Mudslide. , 2013, , 469-473.		2
58	Techniques for the Modelling of the Process Systems in Slow and Fast-Moving Landslides. Advances in Natural and Technological Hazards Research, 2014, , 83-129.	1.1	2
59	Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability. Procedia Earth and Planetary Science, 2016, 16, 128-136.	0.6	1
60	Aquatic Macroinvertebrate Indicators in the Zawgyi Irrigation Channels and a River in the Central Dry Zone of Myanmar. Sustainability, 2020, 12, 8788.	1.6	1
61	Easy to build low-power GPS drifters with local storage and a cellular modem made from off-the-shelf components. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 435-442.	0.6	1