

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029458/publications.pdf Version: 2024-02-01

Снаот

#	Article	IF	CITATIONS
1	A flowerâ€like αâ€phase nickelâ€cobaltâ€manganese hydroxide modified with twoâ€dimensional Ti ₃ C ₂ for high performance hybrid supercapacitors. Electrochemical Science Advances, 2021, 1, e2100018.	1.2	5
2	Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors. Applied Surface Science, 2021, 565, 150482.	3.1	32
3	Strong synergetic electrochemistry between transition metals of α phase Niâ^'Coâ^'Mn hydroxide contributed superior performance for hybrid supercapacitors. Journal of Power Sources, 2019, 412, 559-567.	4.0	132
4	Synthesis of a ternary amide Li K (NH2) and a novel Li3K(NH2)4–xMgH2 combination system for hydrogen storage. Journal of Energy Chemistry, 2019, 35, 37-43.	7.1	13
5	One-pot synthesis of porous nickel–manganese sulfides with tuneable compositions for high-performance energy storage. Journal of Sol-Gel Science and Technology, 2018, 85, 629-637.	1.1	30
6	Sea urchin-like architectures and nanowire arrays of cobalt–manganese sulfides for superior electrochemical energy storage performance. Journal of Materials Science, 2018, 53, 6157-6169.	1.7	27
7	Tuning the electrochemical behavior of Co x Mn3â^'x sulfides by varying different Co/Mn ratios in supercapacitor. Journal of Materials Science, 2017, 52, 6687-6696.	1.7	44
8	Hierarchical NiCo ₂ S ₄ Nanotube@NiCo ₂ S ₄ Nanosheet Arrays on Ni Foam for Highâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2016, 11, 248-255.	1.7	100
9	Sea urchin-like Ni–Co sulfides with different Ni to Co ratios for superior electrochemical performance. Journal of Sol-Gel Science and Technology, 2016, 80, 119-125.	1.1	14
10	One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. Journal of Power Sources, 2016, 329, 314-322.	4.0	133
11	Synergistic effect of Ni and Co ions on molybdates for superior electrochemical performance. Electrochimica Acta, 2016, 190, 57-63.	2.6	51
12	Ternary graphene/sulfur/SiO2 composite as stable cathode for high performance lithium/sulfur battery. International Journal of Hydrogen Energy, 2016, 41, 1819-1827.	3.8	43
13	Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. Journal of Materials Chemistry A, 2015, 3, 23653-23659.	5.2	245
14	Compositional effects on the hydrogen storage properties of Mg(NH2)2–2LiH–xKH and the activity of KH during dehydrogenation reactions. Dalton Transactions, 2014, 43, 2369.	1.6	37
15	In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2–MgH2 system with the addition of lithium halides. Journal of Materials Chemistry A, 2014, 2, 3155.	5.2	39
16	Superior Dehydrogenation/Hydrogenation Kinetics and Long-Term Cycling Performance of K and Rb Cocatalyzed Mg(NH ₂) ₂ -2LiH system. ACS Applied Materials & Interfaces, 2014, 6, 17024-17033.	4.0	34
17	High-temperature failure behaviour and mechanism of K-based additives in Li–Mg–N–H hydrogen storage systems. Journal of Materials Chemistry A, 2014, 2, 7345-7353.	5.2	29
18	Metathesis Reaction-Induced Significant Improvement in Hydrogen Storage Properties of the KF-Added Mg(NH2)2–2LiH System. Journal of Physical Chemistry C, 2013, 117, 866-875.	1.5	59

#	Article	IF	CITATIONS
19	Improved Hydrogenâ€Storage Thermodynamics and Kinetics for an RbFâ€Doped Mg(NH ₂) ₂ –2 LiH System. Chemistry - an Asian Journal, 2013, 8, 2136-2143.	1.7	32