
Zhenyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029310/publications.pdf Version: 2024-02-01

ZHENVU WANC

#	Article	IF	CITATIONS
1	Rational Assembly of Liquid Metal/Elastomer Lattice Conductors for Highâ€Performance and Strainâ€Invariant Stretchable Electronics. Advanced Functional Materials, 2022, 32, .	14.9	29
2	Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Composites Science and Technology, 2021, 206, 108652.	7.8	39
3	Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105957.	7.6	46
4	Bifunctional effect of laser-induced nucleation-preferable microchannels and <i>in situ</i> formed LiF SEI in MXenes for stable lithium-metal batteries. Journal of Materials Chemistry A, 2020, 8, 14114-14125.	10.3	33
5	A facile preparation of flexible and porous reduced graphene oxide woven fabric/polydimethylsiloxane composites for EMI shielding. Materials Research Express, 2019, 6, 1050d4.	1.6	5
6	3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity. Nanotechnology, 2019, 30, 345501.	2.6	41
7	Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 2282-2294.	8.0	105
8	3D-Printed Graphene/Polydimethylsiloxane Composites for Stretchable and Strain-Insensitive Temperature Sensors. ACS Applied Materials & amp; Interfaces, 2019, 11, 1344-1352.	8.0	141
9	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	14.9	61
10	A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284.	12.2	129
11	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	8.0	84
12	Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 9059-9069.	8.0	438
13	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	12.2	194
14	Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 123, 385-394.	10.3	114
15	Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 2017, 92, 190-197.	7.6	51
16	Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites. Nano Letters, 2016, 16, 3585-3593.	9.1	289
17	Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites. Chemistry of Materials, 2016, 28, 6731-6741.	6.7	137
18	Three-Dimensional Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO ₂ Nanoparticles for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28663-28670.	8.0	100

ZHENYU WANG

#	Article	IF	CITATIONS
19	Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 2016, 85, 199-206.	7.6	171
20	Graphene Oxide Papers Simultaneously Doped with Mg ²⁺ and Cl [–] for Exceptional Mechanical, Electrical, and Dielectric Properties. ACS Applied Materials & Interfaces, 2016, 8, 2360-2371.	8.0	34
21	Graphene Aerogel/Epoxy Composites with Exceptional Anisotropic Structure and Properties. ACS Applied Materials & Interfaces, 2015, 7, 5538-5549.	8.0	235
22	Planar Porous Graphene Woven Fabric/Epoxy Composites with Exceptional Electrical, Mechanical Properties, and Fracture Toughness. ACS Applied Materials & Interfaces, 2015, 7, 21455-21464.	8.0	36
23	Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide. Analytical Chemistry, 2015, 87, 12254-12261.	6.5	30