
Michael S Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of the mevalonate pathway. Nature, 1990, 343, 425-430.	13.7	4,996
2	The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell, 1997, 89, 331-340.	13.5	3,353
3	Binding and Degradation of Low Density Lipoproteins by Cultured Human Fibroblasts. Journal of Biological Chemistry, 1974, 249, 5153-5162.	1.6	1,360
4	Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Human Mutation, 1992, 1, 445-466.	1.1	1,045
5	SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell, 1994, 77, 53-62.	13.5	954
6	A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell, 2015, 161, 161-172.	13.5	827
7	Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metabolism, 2008, 7, 95-96.	7.2	810
8	Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol. Cell, 2009, 137, 1213-1224.	13.5	589
9	Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6511-6518.	3.3	492
10	Switch-like Control of SREBP-2 Transport Triggered by Small Changes in ER Cholesterol: A Delicate Balance. Cell Metabolism, 2008, 8, 512-521.	7.2	464
11	Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. Journal of Lipid Research, 2009, 50, S15-S27.	2.0	413
12	Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature, 1987, 326, 760-765.	13.7	407
13	NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15287-15292.	3.3	402
14	Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annual Review of Biochemistry, 2018, 87, 783-807.	5.0	329
15	Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. ELife, 2014, 3, .	2.8	281
16	Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature, 1984, 308, 613-617.	13.7	275
17	Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection. ELife, 2015, 4, .	2.8	249
18	Teaching old dogmas new tricks. Nature, 1987, 330, 113-114.	13.7	236

MICHAEL S BROWN

#	Article	IF	CITATIONS
19	MOLECULAR MEDICINE: The Cholesterol Quartet. Science, 2001, 292, 1310-1312.	6.0	223
20	BIOMEDICINE: Lowering LDLNot Only How Low, But How Long?. Science, 2006, 311, 1721-1723.	6.0	193
21	Scavenging for receptors. Nature, 1990, 343, 508-509.	13.7	184
22	Low Density Lipoprotein Receptors in Bovine Adrenal Cortex. II. Low Density Lipoprotein Binding to Membranes Prepared from Fresh Tissue*. Endocrinology, 1979, 104, 610-616.	1.4	173
23	Receptor-Mediated Uptake of Lipoprotein-Cholesterol and Its Utilization for Steroid Synthesis in the Adrenal Cortex. , 1979, 35, 215-257.		168
24	Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19316-19321.	3.3	160
25	Calcium cages, acid baths and recycling receptors. Nature, 1997, 388, 629-630.	13.7	155
26	Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metabolism, 2014, 20, 54-60.	7.2	135
27	Use of mutant ¹²⁵ I-Perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10580-10585.	3.3	108
28	Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18521-18529.	3.3	84
29	Mad Bet for Rab. Nature, 1993, 366, 14-15.	13.7	68
30	Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: Reversal by growth hormone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1226-1231.	3.3	68
31	Triazoles inhibit cholesterol export from lysosomes by binding to NPC1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 89-94.	3.3	60
32	Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8182-8187.	3.3	57
33	A Receptor-Mediated Pathway for Cholesterol Homeostasis(Nobel Lecture). Angewandte Chemie International Edition in English, 1986, 25, 583-602.	4.4	53
34	HDL <i>miR</i> -ed Down by <i>SREBP</i> Introns. Science, 2010, 328, 1495-1496.	6.0	43
35	Gene therapy for cholesterol. Nature Genetics, 1994, 7, 349-350.	9.4	41
36	Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. Journal of Biological Chemistry, 2017, 292, 8729-8737.	1.6	32

MICHAEL S BROWN

#	Article	IF	CITATIONS
37	Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7449-7454.	3.3	31
38	Lysosomal cholesterol export reconstituted from fragments of Niemann-Pick C1. ELife, 2018, 7, .	2.8	29
39	Point Mutation in Luminal Loop 7 of Scap Protein Blocks Interaction with Loop 1 and Abolishes Movement to Golgi. Journal of Biological Chemistry, 2013, 288, 14059-14067.	1.6	28
40	Interplay between Asters/GRAMD1s and phosphatidylserine in intermembrane transport of LDL cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
41	BHLHE40, a third transcription factor required for insulin induction of SREBP-1c mRNA in rodent liver. ELife, 2018, 7, .	2.8	18
42	Familial Hypercholesterolemia: A Genetic Receptor Disease. Hospital Practice (1995), 1985, 20, 35-46.	0.5	12
43	The Making of a Physician-Scientist: 2000a. Annals of the New York Academy of Sciences, 1999, 882, 247-256.	1.8	7
44	Scientific Side Trips: Six Excursions from the Beaten Path. Journal of Biological Chemistry, 2012, 287, 22418-22435.	1.6	6
45	Science Over Politics. Science, 1999, 283, 1849b-1849.	6.0	3
46	Presentation of the Kober Medal for 1999 to Jean D. Wilson Physicianâ€Scientist Exemplar. Proceedings of the Association of American Physicians, 1999, 111, 469-479.	2.1	1
47	Cholesterol feedback: A tale of two membrane proteins and two sterol sensors. FASEB Journal, 2009, 23, 95.1.	0.2	0
48	Cholesterol Feedback: A Tale of Two Membrane Proteins and Two Sterol Sensors FASEB Journal, 2009, 23, 95.2.	0.2	0
49	The SREBP Pathway: Stadtman's Paradigm Applied to Cholesterol. FASEB Journal, 2011, 25, 201.1.	0.2	0
50	<i>Response</i> : Battling Heart Disease. Science, 1996, 273, 15-15.	6.0	0