Tao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029141/publications.pdf

Version: 2024-02-01

		50276	6	4796	
79	11,110	46		79	
papers	citations	h-index		g-index	
					1
80	80	80		11500	
00	00			11500	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Emerging Negative Warming Impacts on Tibetan Crop Yield. Engineering, 2022, 14, 163-168.	6.7	6
2	An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nature Ecology and Evolution, 2022, 6, 397-404.	7.8	78
3	New understanding of the response of permafrost carbon cycling to climate warming. Science Bulletin, 2022, 67, 1322-1325.	9.0	3
4	Observationâ€based global soil heterotrophic respiration indicates underestimated turnover and sequestration of soil carbon by terrestrial ecosystem models. Global Change Biology, 2022, 28, 5547-5559.	9.5	7
5	Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nature Ecology and Evolution, 2022, 6, 890-899.	7.8	72
6	The imbalance of the Asian water tower. Nature Reviews Earth & Environment, 2022, 3, 618-632.	29.7	286
7	Significant CO2 sink over the Tibet's largest lake: Implication for carbon neutrality across the Tibetan Plateau. Science of the Total Environment, 2022, 843, 156792.	8.0	2
8	Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere, 2022, 13, .	2.2	8
9	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	12.8	26
10	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	29.7	281
11	Drivers of Eurasian Spring Snow-Cover Variability. Journal of Climate, 2021, 34, 2037-2052.	3.2	7
12	An emerging impact of Eurasian spring snow cover on summer rainfall in Eastern China. Environmental Research Letters, 2021, 16, 054012.	5.2	9
13	Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 736-737.	7.8	1
14	Carbon turnover times shape topsoil carbon difference between Tibetan Plateau and Arctic tundra. Science Bulletin, 2021, 66, 1698-1704.	9.0	14
15	Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland. Agricultural and Forest Meteorology, 2021, 306, 108451.	4.8	1
16	Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 2021, 11, 219-225.	18.8	87
17	Higher Temperature Sensitivity of Soil C Release to Atmosphere From Northern Permafrost Soils as Indicated by a Metaâ€Analysis. Global Biogeochemical Cycles, 2020, 34, e2020GB006688.	4.9	12
18	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	7.8	134

#	Article	IF	Citations
19	Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agricultural and Forest Meteorology, 2020, 291, 108077.	4.8	36
20	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	12.9	58
21	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
22	Deciphering impacts of climate extremes on Tibetan grasslands in the last fifteen years. Science Bulletin, 2019, 64, 446-454.	9.0	45
23	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	7.8	316
24	The weakening relationship between Eurasian spring snow cover and Indian summer monsoon rainfall. Science Advances, 2019, 5, eaau8932.	10.3	39
25	Multisatellite Analyses of Spatiotemporal Variability in Photosynthetic Activity Over the Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3778-3797.	3.0	17
26	Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. Journal of Climate, 2019, 32, 737-748.	3.2	40
27	Responses and feedback of the Tibetan Plateau's alpine ecosystem to climate change. Chinese Science Bulletin, 2019, 64, 2842-2855.	0.7	91
28	A new estimation of China's net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agricultural and Forest Meteorology, 2018, 253-254, 84-93.	4.8	58
29	Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 4371-4380.	4.0	21
30	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	12.8	190
31	Impact of Earth Greening on the Terrestrial Water Cycle. Journal of Climate, 2018, 31, 2633-2650.	3.2	142
32	Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agricultural and Forest Meteorology, 2018, 249, 163-175.	4.8	62
33	Spring Snowâ€Albedo Feedback Analysis Over the Third Pole: Results From Satellite Observation and CMIP5 Model Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 750-763.	3.3	17
34	Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands. Geophysical Research Letters, 2018, 45, 2852-2859.	4.0	136
35	Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24, 184-196.	9.5	177
36	Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biology, 2018, 24, 1651-1662.	9.5	76

#	Article	IF	CITATIONS
37	On the causes of trends in the seasonal amplitude of atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 608-616.	9.5	48
38	Sustained Biomass Carbon Sequestration by China's Forests from 2010 to 2050. Forests, 2018, 9, 689.	2.1	12
39	Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 2018, 9, 5391.	12.8	31
40	ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 2018, 11, 5027-5049.	3.6	119
41	Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 2018, 13, 094019.	5. 2	21
42	Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018, 8, 640-646.	18.8	219
43	ORCHIDEE-MICT (v8.4.1), aÂland surface model for the high latitudes: model description and validation. Geoscientific Model Development, 2018, 11, 121-163.	3.6	135
44	Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 2018, 63, 1108-1117.	9.0	92
45	The Response of Vegetation Phenology and Productivity to Drought in Semi-Arid Regions of Northern China. Remote Sensing, 2018, 10, 727.	4.0	78
46	Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 2018, 11, 739-743.	12.9	110
47	Decelerating Autumn CO 2 Release With Warming Induced by Attenuated Temperature Dependence of Respiration in Northern Ecosystems. Geophysical Research Letters, 2018, 45, 5562-5571.	4.0	8
48	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	18.8	183
49	Moistureâ€induced greening of the South Asia over the past three decades. Global Change Biology, 2017, 23, 4995-5005.	9.5	55
50	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	18.8	323
51	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	9.3	114
52	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, 2017, 1, 1649-1654.	7.8	79
53	Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities. Global Biogeochemical Cycles, 2017, 31, 1344-1366.	4.9	11
54	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9326-9331.	7.1	1,708

#	Article	IF	Citations
55	Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences, 2017, 14, 5143-5169.	3.3	43
56	Evaluating biases in simulated land surface albedo from CMIP5 global climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6178-6190.	3.3	46
57	Benchmarking the seasonal cycle of CO ₂ fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 2015, 29, 46-64.	4.9	48
58	Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environmental Research Letters, 2015, 10, 024018.	5.2	26
59	Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2015, 2, 454-467.	9.5	161
60	MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS ONE, 2015, 10, e0130143.	2.5	35
61	Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations. PLoS ONE, 2015, 10, e0137275.	2.5	16
62	A worldwide analysis of spatiotemporal changes in water balanceâ€based evapotranspiration from 1982 to 2009. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1186-1202.	3.3	109
63	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
64	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	12.8	414
65	Effects of Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau. PLoS ONE, 2014, 9, e109319.	2.5	54
66	Changes in satelliteâ€derived spring vegetation greenâ€up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 2013, 19, 881-891.	9.5	276
67	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp></scp> trends. Global Change Biology, 2013, 19, 2117-2132.	9.5	617
68	Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2854-5.	7.1	92
69	Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 2013, 8, 014008.	5.2	125
70	Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6064-6079.	3.3	63
71	What eddyâ€covariance measurements tell us about prior land flux errors in CO ₂ â€flux inversion schemes. Global Biogeochemical Cycles, 2012, 26, .	4.9	47
72	State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.	2.5	18

TAO WANG

#	Article	IF	CITATION
73	Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Global and Planetary Change, 2012, 98-99, 73-80.	3.5	248
74	Changes in satelliteâ€derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 2011, 17, 3228-3239.	9.5	586
75	Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, north China. Soil Biology and Biochemistry, 2010, 42, 451-458.	8.8	106
76	Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality?. Soil Biology and Biochemistry, 2010, 42, 1728-1734.	8.8	106
77	Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 2009, 41, 1008-1014.	8.8	223
78	The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458, 1009-1013.	27.8	1,243
79	Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 2009, 23, .	4.9	180