Lorna Ashton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fingerprinting of skin cells by live cell Raman spectroscopy reveals melanoma cell heterogeneity and cellâ€typeâ€specific responses to <scp>UVR</scp> . Experimental Dermatology, 2022, 31, 1543-1553.	2.9	2
2	Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Analytical Chemistry, 2021, 93, 9041-9048.	6.5	4
3	Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 2021, 56, 733-763.	6.7	46
4	Electron Beam-Treated Enzymatically Mineralized Gelatin Hydrogels for Bone Tissue Engineering. Journal of Functional Biomaterials, 2021, 12, 57.	4.4	3
5	19F Solidâ€State NMR and Vibrational Raman Characterization of Corticosteroid Drugâ€Lipid Membrane Interactions. ChemPlusChem, 2021, 86, 1517-1523.	2.8	1
6	Raman Spectroscopy with 2D Perturbation Correlation Moving Windows for the Characterization of Heparin–Amyloid Interactions. Analytical Chemistry, 2020, 92, 13822-13828.	6.5	6
7	Marine-Inspired Enzymatic Mineralization of Dairy-Derived Whey Protein Isolate (WPI) Hydrogels for Bone Tissue Regeneration. Marine Drugs, 2020, 18, 294.	4.6	7
8	Determination of Phosphorylation and Deprotonation Induced Higher Order Structural Transitions in α _s -Caseins. Analytical Chemistry, 2019, 91, 13940-13946.	6.5	8
9	Singleâ€cell Raman microscopy of microengineered cell scaffolds. Journal of Raman Spectroscopy, 2019, 50, 371-379.	2.5	13
10	Engaging with Raman Spectroscopy to Investigate Antibody Aggregation. Antibodies, 2018, 7, 24.	2.5	31
11	Detection of glycosylation and iron-binding protein modifications using Raman spectroscopy. Analyst, The, 2017, 142, 808-814.	3.5	20
12	Deep convolutional neural networks for Raman spectrum recognition: a unified solution. Analyst, The, 2017, 142, 4067-4074.	3.5	300
13	Raman spectroscopy: an evolving technique for live cell studies. Analyst, The, 2016, 141, 3590-3600.	3.5	220
14	Two-dimensional codistribution spectroscopy applied to UVRR and ROA investigations of biomolecular transitions. Journal of Molecular Structure, 2016, 1124, 173-179.	3.6	6
15	Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering. Analytical Chemistry, 2016, 88, 2105-2112.	6.5	39
16	Using Raman spectroscopy to characterize biological materials. Nature Protocols, 2016, 11, 664-687.	12.0	833
17	Detection of early stage changes associated with adipogenesis using R aman spectroscopy under aseptic conditions. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 1012-1019.	1.5	15
18	Making colourful sense of Raman images of single cells. Analyst, The, 2015, 140, 1852-1858.	3.5	19

LORNA ASHTON

#	Article	IF	CITATIONS
19	Aseptic Raman spectroscopy can detect changes associated with the culture of human dental pulp stromal cells in osteoinductive culture. Analyst, The, 2015, 140, 7347-7354.	3.5	4
20	<scp>UV</scp> resonance Raman spectroscopy: a process analytical tool for host cell <scp>DNA</scp> and <scp>RNA</scp> dynamics in mammalian cell lines. Journal of Chemical Technology and Biotechnology, 2015, 90, 237-243.	3.2	16
21	Monitoring Antibody Aggregation in Early Drug Development Using Raman Spectroscopy and Perturbation-Correlation Moving Windows. Analytical Chemistry, 2014, 86, 11133-11140.	6.5	26
22	Investigation of DMSOâ€Induced Conformational Transitions in Human Serum Albumin Using Twoâ€Dimensional Raman Optical Activity Spectroscopy. Chirality, 2014, 26, 497-501.	2.6	18
23	The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst, The, 2013, 138, 6977.	3.5	28
24	Monitoring Guanidinium-Induced Structural Changes in Ribonuclease Proteins Using Raman Spectroscopy and 2D Correlation Analysis. Analytical Chemistry, 2013, 85, 3570-3575.	6.5	24
25	Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst, The, 2013, 138, 3871.	3.5	163
26	Structural, spectroscopic and redox properties of uranyl complexes with a maleonitrile containing ligand. Dalton Transactions, 2011, 40, 5939.	3.3	49
27	Monitoring the Glycosylation Status of Proteins Using Raman Spectroscopy. Analytical Chemistry, 2011, 83, 6074-6081.	6.5	50
28	The Importance of Protonation in the Investigation of Protein Phosphorylation Using Raman Spectroscopy and Raman Optical Activity. Analytical Chemistry, 2011, 83, 7978-7983.	6.5	49
29	Raman spectroscopy: lighting up the future of microbial identification. Future Microbiology, 2011, 6, 991-997.	2.0	60
30	pH-induced conformational transitions in $\hat{I}\pm$ -lactalbumin investigated with two-dimensional Raman correlation variance plots and moving windows. Journal of Molecular Structure, 2010, 974, 132-138.	3.6	47
31	Susceptibility of Different Proteins to Flow-Induced Conformational Changes Monitored with Raman Spectroscopy. Biophysical Journal, 2010, 98, 707-714.	0.5	35
32	Shear-Induced Unfolding of Lysozyme Monitored In Situ. Biophysical Journal, 2009, 96, 4231-4236.	0.5	58
33	Investigations of conformational transitions in proteins and RNA using 2DCOS Raman and 2DCOS Raman Raman optical activity spectroscopies. Journal of Molecular Structure, 2008, 883-884, 187-194.	3.6	12
34	Two-dimensional Raman and Raman optical activity correlation analysis of the α-helix-to-disordered transition in poly(l-glutamic acid). Analyst, The, 2007, 132, 468-479.	3.5	50
35	Application of two-dimensional correlation analysis to Raman optical activity. Journal of Molecular Structure, 2006, 799, 61-71.	3.6	35
36	Potential pitfalls concerning visualization of the 2D results. Journal of Molecular Structure, 2006, 799, 253-258.	3.6	22

#	Article	IF	CITATIONS
37	Two-dimensional correlation analysis of Raman optical activity data on the α-helix-to-β-sheet transition in poly(L-lysine). Molecular Physics, 2006, 104, 1429-1445.	1.7	50
38	Monitoring the Mode of Action of Antibiotics Using Raman Spectroscopy:Â Investigating Subinhibitory Effects of Amikacin onPseudomonasaeruginosa. Analytical Chemistry, 2005, 77, 2901-2906.	6.5	84