Roger Ibbett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme digestion of biofiber from mechanical heat treated municipal solid waste: Accessing kinetic and rheological design data using a pilot-scale high-solids mixer. Biomass and Bioenergy, 2020, 143, 105817.	5.7	3
2	Succession of physiological stages hallmarks the transcriptomic response of theÂfungus Aspergillus niger to lignocellulose. Biotechnology for Biofuels, 2020, 13, 69.	6.2	4
3	Chloroplast-rich material from the physical fractionation of pea vine (Pisum sativum) postharvest field residue (Haulm). Food Chemistry, 2019, 272, 18-25.	8.2	8
4	Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I "hairy―pectin from sugar beet pulp. Food Chemistry: X, 2019, 2, 100026.	4.3	23
5	Process simulation and life cycle assessment of converting autoclaved municipal solid waste into butanol and ethanol as transport fuels. Waste Management, 2019, 89, 177-189.	7.4	28
6	In-situ studies of hydrothermal reactions of lignocellulosic biomass using high-pressure differential scanning calorimetry. Biomass and Bioenergy, 2019, 121, 48-55.	5.7	6
7	Understanding the mechanisms of cooperative physico-chemical treatment and mechanical disintegration of biomass as a route for enhancing enzyme saccharification. Biomass Conversion and Biorefinery, 2018, 8, 293-304.	4.6	2
8	Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnology for Biofuels, 2017, 10, 35.	6.2	18
9	Impact of Altered Cell Wall Composition on Saccharification Efficiency in Stem Tissue of Arabidopsis RABA GTPase-Deficient Knockout Mutants. Bioenergy Research, 2015, 8, 1362-1370.	3.9	1
10	A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose, 2014, 21, 139-152.	4.9	13
11	The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor. Biotechnology for Biofuels, 2014, 7, 45.	6.2	17
12	Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnology for Biofuels, 2013, 6, 33.	6.2	44
13	The mechanisms of hydrothermal deconstruction of lignocellulose: New insights from thermal–analytical and complementary studies. Bioresource Technology, 2011, 102, 9272-9278.	9.6	102
14	Carbon-13 solid state NMR investigation and modeling of the morphological reorganization in regenerated cellulose fibres induced by controlled acid hydrolysis. Cellulose, 2010, 17, 231-243.	4.9	9
15	Controlled accessibility Lewis acid catalysed thermal reactions of regenerated cellulosic fibres. Cellulose, 2010, 17, 757-770.	4.9	7
16	Evaluation of the mechanical properties of lyocell textile materials crosslinked with 2,4â€diacrylamidobenzenesulfonic acid under swollen and nonswollen conditions. Journal of Applied Polymer Science, 2009, 114, 2116-2127.	2.6	3
17	Controlled thermo-catalytic modification of regenerated cellulosic fibres using magnesium chloride Lewis acid. Cellulose, 2009, 16, 1075-1087.	4.9	8
18	Interpretation of relaxation and swelling phenomena in lyocell regenerated cellulosic fibres and textiles associated with the untake of solutions of sodium hydroxide. Cellulose, 2008, 15, 393-406	4.9	14