Len J Wade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3028000/publications.pdf

Version: 2024-02-01

117625 128289 3,839 65 34 60 h-index citations g-index papers 68 68 68 3904 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increased Food and Ecosystem Security via Perennial Grains. Science, 2010, 328, 1638-1639.	12.6	397
2	Stable soil organic matter: A comparison of C:N:P:S ratios in Australian and other world soils. Geoderma, 2011, 163, 197-208.	5.1	350
3	Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry, 2013, 60, 77-86.	8.8	278
4	A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research, 2002, 76, 199-219.	5.1	245
5	Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 2014, 68, 402-409.	8.8	240
6	Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theoretical and Applied Genetics, 2002, 104, 880-893.	3.6	149
7	Genotype by environment interactions across diverse rainfed lowland rice environments. Field Crops Research, 1999, 64, 35-50.	5.1	113
8	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. Plant Production Science, 2000, 3, 180-188.	2.0	96
9	Genotypic Variation in Response of Rainfed Lowland Rice to Prolonged Drought and Rewatering. Plant Production Science, 2004, 7, 406-420.	2.0	85
10	Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 2009, 65, 338-344.	4.2	78
11	Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil. PLoS ONE, 2016, 11, e0153698.	2.5	7 5
12	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. III. Water extraction during the drought period. Plant Production Science, 2000, 3, 189-196.	2.0	72
13	Effects of Phenotyping Environment on Identification of Quantitative Trait Loci for Rice Root Morphology under Anaerobic Conditions. Crop Science, 2002, 42, 255.	1.8	72
14	A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agricultural Systems, 2008, 96, 166-174.	6.1	70
15	Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Research, 2006, 98, 39-51.	5.1	68
16	Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133, 68-89.	5.1	65
17	Genotypic Variations in Response of Lateral Root Development to Fluctuating Soil Moisture in Rice. Plant Production Science, 2000, 3, 335-343.	2.0	63
18	Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 2011, 49, 1126-1137.	5.8	63

#	Article	IF	CITATIONS
19	Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research, 2006, 98, 1-11.	5.1	58
20	Root Development, Water Uptake, and Shoot Dry Matter Production under Water Deficit Conditions in Two CSSLs of Rice: Functional Roles of Root Plasticity. Plant Production Science, 2011, 14, 307-317.	2.0	57
21	Growth and Water Use Response of Doubled-Haploid Rice Linesto Drought and Rewatering during the Vegetative Stage. Plant Production Science, 2006, 9, 141-151.	2.0	53
22	Genotype×environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments. Field Crops Research, 2008, 108, 117-125.	5.1	53
23	Carbon Isotope Discrimination Varies Genetically in C ₄ Species. Plant Physiology, 1990, 92, 534-537.	4.8	50
24	Dry Matter Production and Root System Development of Rice Cultivars under Fluctuating Soil Moisture. Plant Production Science, 2000, 3, 197-207.	2.0	48
25	Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop and Pasture Science, 2010, 61, 679.	1.5	47
26	Progress in developing perennial wheats for grain and grazing. Crop and Pasture Science, 2014, 65, 1147.	1.5	47
27	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. Plant Production Science, 2000, 3, 173-179.	2.0	46
28	Performance, Economics and Potential Impact of Perennial Rice PR23 Relative to Annual Rice Cultivars at Multiple Locations in Yunnan Province of China. Sustainability, 2018, 10, 1086.	3.2	46
29	Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research, 2006, 96, 455-465.	5.1	45
30	Genotypic differences in root penetration ability of wheat through thin wax layers in contrasting water regimes and in the field. Plant and Soil, 2007, 301, 135-149.	3.7	45
31	Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications, 2020, $11,725$.	12.8	40
32	Stomatal Responses in Rainfed Lowland Rice to Partial Soil Drying; Evidence for Root Signals. Plant Production Science, 2008, 11, 28-41.	2.0	39
33	Genotype×environment interactions for root depth of wheat. Field Crops Research, 2012, 137, 117-125.	5.1	39
34	Selection for water-soluble carbohydrate accumulation and investigation of geneticÂ×Âenvironment interactions in an elite wheat breeding population. Theoretical and Applied Genetics, 2017, 130, 2445-2461.	3.6	39
35	Root Growth and Water Extraction Response of Doubled-Haploid Rice Lines to Drought and Rewatering during the Vegetative Stage. Plant Production Science, 2005, 8, 497-508.	2.0	38
36	The Performance of Early-Generation Perennial Winter Cereals at 21 Sites across Four Continents. Sustainability, 2018, 10, 1124.	3.2	36

#	Article	IF	CITATIONS
37	Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./) Tj ETQq1 10.7	84314 rg	BŢ/Overloc
38	Constraints to High Yield of Dry-Seeded Rice in the Rainy Season of a Humid Tropic Environment. Plant Production Science, 2000, 3, 164-172.	2.0	34
39	Internal efficiency, nutrient uptake, and the relation to field water resources in rainfed lowland rice of northeast Thailand. Plant and Soil, 2006, 286, 193-208.	3.7	26
40	Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems. PLoS ONE, 2015, 10, e0124127.	2.5	24
41	Severity of root rot in mature subterranean clover and associated fungal pathogens in the wheatbelt of Western Australia. Crop and Pasture Science, 2009, 60, 43.	1.5	24
42	Stomatal Responses in Rainfed Lowland Rice to Partial Soil Drying; Comparison of Two Lines. Plant Production Science, 2009, 12, 17-28.	2.0	22
43	Genome-Wide Associations for Water-Soluble Carbohydrate Concentration and Relative Maturity in Wheat Using SNP and DArT Marker Arrays. G3: Genes, Genomes, Genetics, 2017, 7, 2821-2830.	1.8	22
44	Rhizo-lysimetry: facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems. Plant Methods, 2013, 9, 3.	4.3	21
45	Use of genotype \tilde{A} — environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils. Annals of Botany, 2013, 112, 359-368.	2.9	20
46	Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Molecular Breeding, 2014, 34, 631-642.	2.1	19
47	Insights into adoption of farming practices through multiple lenses: an innovation systems approach. Development in Practice, 2018, 28, 983-998.	1.3	19
48	Genotype by environment interactions for performance of perennial rice genotypes (Oryza sativa) Tj ETQq0 0 0 rg southern China. Field Crops Research, 2019, 241, 107556.	BT /Overlo 5.1	ock 10 Tf 50 17
49	Root penetration ability of wheat through thin wax-layers under drought and well-watered conditions. Australian Journal of Agricultural Research, 2005, 56, 1235.	1.5	17
50	Hydrogen isotope composition of soil water above and below the hardpan in a rainfed lowland rice field. Field Crops Research, 2006, 96, 477-480.	5.1	16
51	INTEGRATED NUTRIENT–WEED MANAGEMENT UNDER MECHANISED DRY DIRECT SEEDING (DDS) IS ESSENTIAL FOR SUSTAINED SMALLHOLDER ADOPTION IN RAINFED LOWLAND RICE (ORYZA SATIVA L.). Experimental Agriculture, 2019, 55, 509-525.	0.9	14
52	Quantification of an overlooked water resource in the tropical rainfed lowlands using RapidEye satellite data: A case of farm ponds and the potential gross value for smallholder production in southern Laos. Agricultural Water Management, 2019, 212, 111-118.	5.6	13
53	Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat. G3: Genes, Genomes, Genetics, 2018, 8, 1909-1919.	1.8	12
54	Temporal variation in root penetration ability of wheat genotypes through thin wax layers in contrasting water regimes and in the field. Field Crops Research, 2012, 138, 1-10.	5.1	11

#		Article	IF	CITATIONS
58	5	Topographic Position Influences Water Availability in Rainfed Lowland Rice at Rajshahi, Northwest Bangladesh. Plant Production Science, 2004, 7, 101-103.	2.0	10
56	5	Adaptation of rice (<i>Oryza sativa</i> L.) genotypes in the rainfed lowlands of Lao PDR. Plant Production Science, 2017, 20, 477-484.	2.0	10
57	7	Accurate measurement of resistant soil organic matter and its stoichiometry. European Journal of Soil Science, 2016, 67, 695-705.	3.9	8
58	3	PERFORMANCE AND SURVIVAL OF PERENNIAL RICE DERIVATIVES (<i>ORYZA SATIVA</i> L. <i>ORYZA) Tj ETQq0 C</i>	0 o.gBT /0	Overlock 10
59)	Comparison of leaf osmotic adjustment expression in wheat (Triticum aestivum L.) under water deficit between the whole plant and tissue levels. Agriculture and Natural Resources, 2018, 52, 33-38.	0.1	6
60	O	Nitrogen contributions in a windmill grass (Chloris truncata) - wheat (Triticum aestivum L.) system in south-western Australia. Soil Research, 2007, 45, 635.	1.1	6
61	1	INCREASES IN SEED DENSITY CAN IMPROVE PLANT STAND AND INCREASE SEEDLING VIGOUR FROM SMALL SEEDS OF WHEAT (<i>TRITICUM AESTIVUM</i>). Experimental Agriculture, 2011, 47, 445-457.	0.9	4
62	2	Short-duration mungbean (Vigna radiata (L.) R. Wilczek) genotypes differ in performance, water use and apparent water-use efficiency in southern Lao PDR. Field Crops Research, 2020, 245, 107662.	5.1	4
68	3	Emergence, stand establishment and vigour of deep-sown Australian and CIMMYT wheats. Australian Journal of Experimental Agriculture, 2006, 46, 1167.	1.0	3
64	4	INTEGRATED NUTRIENT–WEED MANAGEMENT UNDER MECHANISED DRY DIRECT SEEDING (DDS) IS ESSENTIAL FOR SUSTAINED SMALLHOLDER ADOPTION IN RAINFED LOWLAND RICE (ORYZA SATIVA L.)–CORRIGENDUM. Experimental Agriculture, 2019, 55, 526-527.		0
68	5	Performance and adoption of submergence-tolerant TDK1-Sub1 rice in southern Lao PDR. , 2022, 1, $108-114$.		0