
Charles L Limoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model studies of the role of oxygen in the FLASH effect. Medical Physics, 2022, 49, 2068-2081.	3.0	37
2	Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radical Biology and Medicine, 2022, 178, 189-201.	2.9	15
3	An International Consensus on the Design of Prospective Clinical–Translational Trials in Spatially Fractionated Radiation Therapy. Advances in Radiation Oncology, 2022, 7, 100866.	1.2	7
4	Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neuroscience and Biobehavioral Reviews, 2022, 138, 104676.	6.1	17
5	Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clinical Cancer Research, 2021, 27, 775-784.	7.0	144
6	Extracellular Vesicle Proteome of Breast Cancer Patients with and Without Cognitive Impairment Following Anthracycline-based Chemotherapy: An Exploratory Study. Biomarker Insights, 2021, 16, 117727192110182.	2.5	6
7	Chronic Low Dose Neutron Exposure Results in Altered Neurotransmission Properties of the Hippocampus-Prefrontal Cortex Axis in Both Mice and Rats. International Journal of Molecular Sciences, 2021, 22, 3668.	4.1	13
8	Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiology of Disease, 2021, 151, 105252.	4.4	20
9	Letter in Response toÂDoyen et al., "Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments― Frontiers in Oncology, 2021, 11, 687593.	2.8	0
10	The Cannabinoid Receptor 1 Reverse Agonist AM251 Ameliorates Radiation-Induced Cognitive Decrements. Frontiers in Cellular Neuroscience, 2021, 15, 668286.	3.7	2
11	Sex-Specific Differences in Toxicity Following Systemic Paclitaxel Treatment and Localized Cardiac Radiotherapy. Cancers, 2021, 13, 3973.	3.7	6
12	Nonhuman primate models in the study of spaceflight stressors: Past contributions and future directions. Life Sciences in Space Research, 2021, 30, 9-23.	2.3	3
13	Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. International Journal of Molecular Sciences, 2021, 22, 9020.	4.1	6
14	Dissecting Differential Complex Behavioral Responses to Simulated Space Radiation Exposures. Radiation Research, 2021, 197, .	1.5	9
15	Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Translational Medicine, 2020, 9, 93-105.	3.3	33
16	Spatially fractionated radiation therapy: History, present and the future. Clinical and Translational Radiation Oncology, 2020, 20, 30-38.	1.7	72
17	Response to Ling et al. regarding "An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses― Radiotherapy and Oncology, 2020, 147, 241-242.	0.6	2
18	Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain?. British Journal of Radiology, 2020, 93, 20200245.	2.2	6

#	Article	IF	CITATIONS
19	Sex-Specific Cognitive Deficits Following Space Radiation Exposure. Frontiers in Behavioral Neuroscience, 2020, 14, 535885.	2.0	29
20	Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury. Cancer Research, 2020, 80, 4266-4277.	0.9	27
21	Mitigation of helium irradiation-induced brain injury by microglia depletion. Journal of Neuroinflammation, 2020, 17, 159.	7.2	34
22	Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers, 2020, 12, 1671.	3.7	74
23	Role of Exosomes in Cancer-Related Cognitive Impairment. International Journal of Molecular Sciences, 2020, 21, 2755.	4.1	19
24	Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 766-778.	0.8	70
25	Extracellular Vesicles for the Treatment of Radiation-Induced Normal Tissue Toxicity in the Lung. Frontiers in Oncology, 2020, 10, 602763.	2.8	7
26	Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiation Research, 2020, 194, 636-645.	1.5	43
27	All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect. Radiation Research, 2020, 194, 571-572.	1.5	48
28	Radiation Research Special Issue: New Beam Delivery Modalities are Shaping the Future of Radiotherapy. Radiation Research, 2020, 194, 567-570.	1.5	9
29	Neurological Impairments in Mice Subjected to Irradiation and Chemotherapy. Radiation Research, 2020, 193, 407.	1.5	12
30	Evaluating different routes of extracellular vesicle administration for cranial therapies. Journal of Cancer Metastasis and Treatment, 2020, 2020, .	0.8	8
31	Response to the Commentary from Bevelacqua et al ENeuro, 2020, 7, ENEURO.0439-19.2019.	1.9	1
32	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 625-635.	1.5	7
33	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 625-635.	1.5	34
34	Plasma-derived extracellular vesicles yield predictive markers of cranial irradiation exposure in mice. Scientific Reports, 2019, 9, 9460.	3.3	19
35	Response to letter regarding "An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses― Radiotherapy and Oncology, 2019, 139, 64-65.	0.6	12
36	Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10943-10951.	7.1	326

#	Article	IF	CITATIONS
37	An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiotherapy and Oncology, 2019, 139, 23-27.	0.6	189
38	miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: a safe cell-free treatment to ameliorate radiation-induced brain injury. International Journal of Radiation Biology, 2019, 95, 427-435.	1.8	32
39	New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. ENeuro, 2019, 6, ENEURO.0094-19.2019.	1.9	80
40	Stochastic Modeling of Radiation-induced Dendritic Damage on in silico Mouse Hippocampal Neurons. Scientific Reports, 2018, 8, 5494.	3.3	14
41	Remediation of Radiation-Induced Cognitive Dysfunction through Oral Administration of the Neuroprotective Compound NSI-189. Radiation Research, 2018, 189, 345.	1.5	20
42	Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Experimental Neurology, 2018, 305, 44-55.	4.1	103
43	Exposure to Ionizing Radiation Causes Endoplasmic Reticulum Stress in the Mouse Hippocampus. Radiation Research, 2018, 190, 483.	1.5	15
44	Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. Journal of Comparative Neurology, 2018, 526, 2845-2855.	1.6	23
45	Space–brain: The negative effects of space exposure on the central nervous system. , 2018, 9, 9.		44
46	Lessons learned from an unstable genomic landscape. International Journal of Radiation Biology, 2017, 93, 1177-1181.	1.8	3
47	Deep-Space Deal Breaker. Scientific American, 2017, 316, 54-59.	1.0	7
48	Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission. Brain Structure and Function, 2017, 222, 2345-2357.	2.3	47
49	Stem Cell Therapies for the Resolution of Radiation Injury to the Brain. Current Stem Cell Reports, 2017, 3, 342-347.	1.6	8
50	Men, Women, and Space Travel: Gene-Linked Molecular Networks, Human Countermeasures, and Legal and Ethical Considerations. , 2017, 1, 54-67.	0.8	1
51	The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy. Oncotarget, 2017, 8, 80853-80868.	1.8	24
52	Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Frontiers in Molecular Neuroscience, 2016, 9, 42.	2.9	23
53	William F. Morgan (1952–2015). Radiation Research, 2016, 185, 106-108.	1.5	5
54	Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4836-4841.	7.1	79

#	Article	IF	CITATIONS
55	Irradiation of primary human gliomas triggers dynamic and aggressive survival responses involving microvesicle signaling. Environmental and Molecular Mutagenesis, 2016, 57, 405-415.	2.2	16
56	Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice. Environmental and Molecular Mutagenesis, 2016, 57, 364-371.	2.2	21
57	3D surface analysis of hippocampal microvasculature in the irradiated brain. Environmental and Molecular Mutagenesis, 2016, 57, 341-349.	2.2	20
58	Understanding and targeting dynamic stress responses of the brain: What we have learned and how to improve neurocognitive outcome following neurotoxic insult. Environmental and Molecular Mutagenesis, 2016, 57, 319-321.	2.2	0
59	Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Scientific Reports, 2016, 6, 29901.	3.3	144
60	Cosmic radiation exposure and persistent cognitive dysfunction. Scientific Reports, 2016, 6, 34774.	3.3	167
61	Elimination of microglia improves cognitive function following cranial irradiation. Scientific Reports, 2016, 6, 31545.	3.3	195
62	Muscle Fiber Cross-sectional Area Is Unaffected 14 Days Following A Clinical Dose Of Radiation. Medicine and Science in Sports and Exercise, 2016, 48, 358.	0.4	0
63	Defining the Optimal Window for Cranial Transplantation of Human Induced Pluripotent Stem Cell-Derived Cells to Ameliorate Radiation-Induced Cognitive Impairment. Stem Cells Translational Medicine, 2015, 4, 74-83.	3.3	30
64	Human Neural Stem Cell Transplantation Provides Long-Term Restoration of Neuronal Plasticity in the Irradiated Hippocampus. Cell Transplantation, 2015, 24, 691-702.	2.5	36
65	Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction. Antioxidants and Redox Signaling, 2015, 22, 78-91.	5.4	80
66	Stem Cell Transplantation Reverses Chemotherapy-Induced Cognitive Dysfunction. Cancer Research, 2015, 75, 676-686.	0.9	66
67	Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release. Journal of Neuroscience, 2015, 35, 10039-10057.	3.6	113
68	What happens to your brain on the way to Mars. Science Advances, 2015, 1, .	10.3	179
69	Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles. Redox Biology, 2015, 5, 24-32.	9.0	32
70	Your Brain on Mars. Radiation Research, 2015, 184, 1-2.	1.5	6
71	Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Structure and Function, 2015, 220, 1161-1171.	2.3	131
72	Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach. PLoS Computational Biology, 2015, 11, e1004428.	3.2	29

#	Article	IF	CITATIONS
73	Consequences of Low Dose Ionizing Radiation Exposure on the Hippocampal Microenvironment. PLoS ONE, 2015, 10, e0128316.	2.5	40
74	Mitochondriaâ€Targeted Catalase Does Not Enhance Myogenesis following Cardiotoxin Muscle Injury and Radiation Exposure. FASEB Journal, 2015, 29, 947.22.	0.5	0
75	Functional Consequences of Radiation-Induced Oxidative Stress in Cultured Neural Stem Cells and the Brain Exposed to Charged Particle Irradiation. Antioxidants and Redox Signaling, 2014, 20, 1410-1422.	5.4	111
76	Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects. Antioxidants and Redox Signaling, 2014, 21, 338-355.	5.4	70
77	Long-term cognitive effects of human stem cell transplantation in the irradiated brain. International Journal of Radiation Biology, 2014, 90, 816-820.	1.8	22
78	Linking differential radiation responses to glioma heterogeneity. Oncotarget, 2014, 5, 1657-1665.	1.8	26
79	Transplantation of Human Fetal-Derived Neural Stem Cells Improves Cognitive Function following Cranial Irradiation. Cell Transplantation, 2014, 23, 1255-1266.	2.5	28
80	Defining functional changes in the brain caused by targeted stereotaxic radiosurgery. Translational Cancer Research, 2014, 3, 124-137.	1.0	34
81	Mitochondrial-Targeted Human Catalase Affords Neuroprotection From Proton Irradiation. Radiation Research, 2013, 180, 1-6.	1.5	46
82	Cranial irradiation compromises neuronal architecture in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12822-12827.	7.1	177
83	Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation. Redox Biology, 2013, 1, 153-162.	9.0	30
84	Enhanced hippocampusâ€dependent memory and reduced anxiety in mice overâ€expressing human catalase in mitochondria. Journal of Neurochemistry, 2013, 125, 303-313.	3.9	63
85	Comparing the Functional Consequences of Human Stem Cell Transplantation in the Irradiated Rat Brain. Cell Transplantation, 2013, 22, 55-64.	2.5	24
86	Tumor-Specific Chromosome Mis-Segregation Controls Cancer Plasticity by Maintaining Tumor Heterogeneity. PLoS ONE, 2013, 8, e80898.	2.5	16
87	Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture. Journal of Aging Research, 2012, 2012, 1-7.	0.9	27
88	Impaired Cognitive Function and Hippocampal Neurogenesis following Cancer Chemotherapy. Clinical Cancer Research, 2012, 18, 1954-1965.	7.0	234
89	Redox Regulation of Stem Cell Compartments: The Convergence of Radiation-Induced Normal Tissue Damage and Oxidative Stress. , 2012, , 169-192.		2
90	Characterizing the Radioresponse of Pluripotent and Multipotent Human Stem Cells. PLoS ONE, 2012, 7, e50048.	2.5	55

#	Article	IF	CITATIONS
91	Satellite Cells Say NO to Radiation. Radiation Research, 2011, 175, 561-568.	1.5	10
92	Quantifying Cognitive Decrements Caused by Cranial Radiotherapy. Journal of Visualized Experiments, 2011, , .	0.3	6
93	Stem Cell Transplantation Strategies for the Restoration of Cognitive Dysfunction Caused by Cranial Radiotherapy. Journal of Visualized Experiments, 2011, , .	0.3	6
94	PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE. Journal of Innovative Optical Health Sciences, 2011, 04, 289-300.	1.0	3
95	Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction. Cancer Research, 2011, 71, 4834-4845.	0.9	101
96	Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radical Biology and Medicine, 2010, 49, 1846-1855.	2.9	113
97	Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. Journal of Applied Physiology, 2010, 108, 152-161.	2.5	100
98	The Radiosensitivity of Satellite Cells: Cell Cycle Regulation, Apoptosis and Oxidative Stress. Radiation Research, 2010, 174, 582-589.	1.5	37
99	Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone, 2010, 47, 248-255.	2.9	62
100	Short-Term Effects of Whole-Body Exposure to ⁵⁶ Fe lons in Combination with Musculoskeletal Disuse on Bone Cells. Radiation Research, 2010, 173, 494-504.	1.5	49
101	Mitochondrial Complex II Dysfunction Can Contribute Significantly to Genomic Instability after Exposure to Ionizing Radiation. Radiation Research, 2009, 172, 737-745.	1.5	83
102	Total-Body Irradiation of Postpubertal Mice with ¹³⁷ Cs Acutely Compromises the Microarchitecture of Cancellous Bone and Increases Osteoclasts. Radiation Research, 2009, 171, 283-289.	1.5	94
103	Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19150-19155.	7.1	116
104	Overexpression of glutamate-cysteine ligase protects human COV434 granulosa tumour cells against oxidative and Â-radiation-induced cell death. Mutagenesis, 2009, 24, 211-224.	2.6	44
105	Neural Precursor Cells and Central Nervous System Radiation Sensitivity. Seminars in Radiation Oncology, 2009, 19, 122-132.	2.2	116
106	Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radical Biology and Medicine, 2009, 47, 1459-1467.	2.9	58
107	Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis, 2008, 24, 161-167.	2.6	25
108	Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells. Biochemical Journal, 2008, 413, 185-191.	3.7	62

#	Article	IF	CITATIONS
109	Radiation Response of Neural Precursor Cells. Neurosurgery Clinics of North America, 2007, 18, 115-127.	1.7	105
110	Pol η is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene, 2007, 26, 5713-5721.	5.9	39
111	Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radical Biology and Medicine, 2007, 42, 1133-1145.	2.9	83
112	Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiation and Environmental Biophysics, 2007, 46, 167-172.	1.4	99
113	Altered growth and radiosensitivity in neural precursor cells subjected to oxidative stress. International Journal of Radiation Biology, 2006, 82, 640-647.	1.8	38
114	Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells. Radiation Protection Dosimetry, 2006, 122, 228-236.	0.8	28
115	Alternative recombination pathways in UV-irradiated XP variant cells. Oncogene, 2005, 24, 3708-3714.	5.9	26
116	High-LET Radiation Induces Inflammation and Persistent Changes in Markers of Hippocampal Neurogenesis. Radiation Research, 2005, 164, 556-560.	1.5	127
117	Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons. Radiation Research, 2005, 164, 540-544.	1.5	65
118	Cell-density-dependent regulation of neural precursor cell function. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16052-16057.	7.1	129
119	Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress. Radiation Research, 2004, 161, 17-27.	1.5	190
120	Indicators of Hippocampal Neurogenesis are Altered by56Fe-Particle Irradiation in a Dose-Dependent Manner. Radiation Research, 2004, 162, 442-446.	1.5	86
121	Prospects for Research in Radiation Biology. , 2004, , 29-43.		0
122	Induction of Chromosomal Instability by Chronic Oxidative Stress. Neoplasia, 2003, 5, 339-346.	5.3	98
123	Persistent oxidative stress in chromosomally unstable cells. Cancer Research, 2003, 63, 3107-11.	0.9	143
124	UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, Â-H2AX formation, and Mre11 relocalization. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 233-238.	7.1	197
125	Polymerase η and p53 jointly regulate cell survival, apoptosis and Mre11 recombination during S phase checkpoint arrest after UV irradiation. DNA Repair, 2002, 1, 41-57.	2.8	26
126	Bystander effects in radiation-induced genomic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 504, 91-100.	1.0	80

#	Article	IF	CITATIONS
127	Nucleotide excision repair "a legacy of creativity― Mutation Research DNA Repair, 2001, 485, 23-36.	3.7	32
128	DNA strand break yields after post-high LET irradiation incubation with endonuclease-III and evidence for hydroxyl radical clustering. International Journal of Radiation Biology, 2001, 77, 155-164.	1.8	34
129	DNA polymerase ? undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination. Genes Chromosomes and Cancer, 2001, 32, 222-235.	2.8	48
130	Attenuation of radiation-induced genomic instability by free radical scavengers and cellular proliferation. Free Radical Biology and Medicine, 2001, 31, 10-19.	2.9	81
131	A role for chromosomal instability in the development of and selection for radioresistant cell variants. British Journal of Cancer, 2001, 84, 489-492.	6.4	18
132	Genomic instability induced by high and low let ionizing radiation. Advances in Space Research, 2000, 25, 2107-2117.	2.6	101
133	Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7939-7946.	7.1	96
134	Critical Target and Dose and Dose-Rate Responses for the Induction of Chromosomal Instability by Ionizing Radiation. Radiation Research, 1999, 151, 677.	1.5	72
135	DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 404, 125-128.	1.0	93
136	Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells. Carcinogenesis, 1998, 19, 259-265.	2.8	63
137	Induction of Chromosome Aberrations and Delayed Genomic Instability by Photochemical Processes. Photochemistry and Photobiology, 1998, 67, 233-238.	2.5	0
138	Induction of Chromosome Aberrations and Delayed Genomic Instability by Photochemical Processes. Photochemistry and Photobiology, 1998, 67, 233.	2.5	14
139	Photochemical production of uracil quantified in bromodeoxyuridine-substituted SV40 DNA by uracil DNA glycosylase and a lysyl-tyrosyl-lysine tripeptide. Mutagenesis, 1997, 12, 443-447.	2.6	7
140	Perpetuating radiation-induced chromosomal instability. Radiation Oncology Investigations, 1997, 5, 124-128.	0.9	37
141	Genomic Instability Induced by Ionizing Radiation. Radiation Research, 1996, 146, 247.	1.5	413
142	Photochemical production of double-strand breaks in cellular DNA. Mutagenesis, 1995, 10, 453-456.	2.6	8
143	Mechanisms of Radiosensitization in Iododeoxyuridine-Substituted Cells. International Journal of Radiation Biology, 1995, 67, 647-653.	1.8	15
144	Response of Bromodeoxyuridine-Substituted Chinese Hamster Cells to UVA Light Exposure in the Presence of Hoechst Dye #33258: Survival and DNA Repair Studies. Radiation Research, 1994, 138, 312.	1.5	14