List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302776/publications.pdf Version: 2024-02-01

KANLIII

#	Article	IF	CITATIONS
1	Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers. Angewandte Chemie - International Edition, 2011, 50, 3084-3088.	7.2	576
2	Electrospun TiO ₂ Nanofiberâ€Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Advanced Materials, 2012, 24, 2756-2760.	11.1	315
3	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	7.3	253
4	Shape-Controlled Production of Biodegradable Calcium Alginate Gel Microparticles Using a Novel Microfluidic Device. Langmuir, 2006, 22, 9453-9457.	1.6	207
5	Platelet–Leukocyte Hybrid Membraneâ€Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1803531.	7.8	154
6	A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library. ACS Nano, 2010, 4, 6235-6243.	7.3	122
7	Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Physics in Medicine and Biology, 2009, 54, 6757-6771.	1.6	101
8	An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on A Chip, 2009, 9, 2281.	3.1	91
9	Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 2010, 96, .	1.5	78
10	Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluidics and Nanofluidics, 2007, 3, 239-243.	1.0	76
11	A small library of DNA-encapsulated supramolecular nanoparticles for targeted gene delivery. Chemical Communications, 2010, 46, 1851-1853.	2.2	51
12	Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluidics and Nanofluidics, 2012, 13, 761-767.	1.0	51
13	Valve-based microfluidic device for droplet on-demand operation and static assay. Applied Physics Letters, 2010, 97, .	1.5	47
14	Simultaneous and automated detection of influenza A virus hemagglutinin H7 and H9 based on magnetism and size mediated microfluidic chip. Sensors and Actuators B: Chemical, 2020, 308, 127675.	4.0	44
15	Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device. Lab on A Chip, 2011, 11, 4117.	3.1	40
16	Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Journal of Translational Medicine, 2018, 16, 139.	1.8	40
17	Flow-Focusing Generation of Monodisperse Water Droplets Wrapped by Ionic Liquid on Microfluidic Chips:  From Plug to Sphere. Langmuir, 2007, 23, 11924-11931.	1.6	34
18	A Hydrodynamically Focused Stream as a Dynamic Template for Site‣pecific Electrochemical Micropatterning of Conducting Polymers. Angewandte Chemie - International Edition, 2008, 47, 1072-1075.	7.2	31

#	Article	IF	CITATIONS
19	Microfluidics for Positron Emission Tomography Probe Development. Molecular Imaging, 2010, 9, 7290.2010.00027.	0.7	31
20	A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging. Nanotechnology, 2010, 21, 445603.	1.3	28
21	PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsystem Technologies, 2017, 23, 1937-1942.	1.2	28
22	Enhanced performance of multi-dimensional CoS nanoflake/NiO nanosheet architecture with synergetic effect for asymmetric supercapacitor. Nanotechnology, 2018, 29, 455401.	1.3	28
23	Microfluidic-Based ¹⁸ F-Labeling of Biomolecules for Immuno–Positron Emission Tomography. Molecular Imaging, 2011, 10, 7290.2010.00043.	0.7	26
24	Self-powered blue-sensitive photodetector based on PEDOT:PSS/SnO2 microwires organic/inorganic p–n heterojunction. Applied Physics A: Materials Science and Processing, 2015, 119, 1561-1566.	1.1	26
25	Self-amplified piezoelectric nanogenerator with enhanced output performance: The synergistic effect of micropatterned polymer film and interweaved silver nanowires. Applied Physics Letters, 2015, 106, .	1.5	24
26	Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Molecular Imaging, 2011, 10, 168-76, 1-7.	0.7	24
27	Bidirectional electroluminescence from p -SnO 2 / i -MgZnO/ n -ZnO heterojunction light-emitting diodes. Journal of Luminescence, 2017, 186, 223-228.	1.5	18
28	Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition. Microfluidics and Nanofluidics, 2010, 9, 933-943.	1.0	17
29	Microfluidics for positron emission tomography probe development. Molecular Imaging, 2010, 9, 175-91.	0.7	15
30	Molecular Imaging Probe Development Using Microfluidics. Current Organic Synthesis, 2011, 8, 473-487.	0.7	14
31	Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device. IEEE Transactions on Biomedical Engineering, 2019, 66, 1536-1541.	2.5	14
32	Highly efficient isolation and release of circulating tumor cells based on size-dependent filtration and degradable ZnO nanorods substrate in a wedge-shaped microfluidic chip. Biomedical Microdevices, 2017, 19, 93.	1.4	13
33	A novel method for generation of amphiphilic PDMS particles by selective modification. Microfluidics and Nanofluidics, 2011, 10, 453-458.	1.0	11
34	A dynamic micromixer for arbitrary control of disguised chemical selectivity. Chemical Communications, 2008, , 3426.	2.2	10
35	Negative depletion mediated brightfield circulating tumour cell identification strategy on microparticle-based microfluidic chip. Journal of Nanobiotechnology, 2020, 18, 70.	4.2	10
36	A simple pyramid-shaped microchamber towards highly efficient isolation of circulating tumor cells from breast cancer patients. Biomedical Microdevices, 2018, 20, 83.	1.4	8

#	Article	IF	CITATIONS
37	An automated detection of influenza virus based on 3-D magnetophoretic separation and magnetic label. Analyst, The, 2021, 146, 930-936.	1.7	8
38	Simple and convenient microfluidic flow rate measurement based on microbubble image velocimetry. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	7
39	High-performance multiplex microvalves fabrication and using for tumor cells staining on a microfluidic chip. Biomedical Microdevices, 2019, 21, 87.	1.4	7
40	On-demand generation and mixing of liquid-in-gas slugs with digitally programmable composition and size. Journal of Micromechanics and Microengineering, 2015, 25, 084006.	1.5	6
41	Injection Angle Dependence in Flow Focusing Based Droplet Formation. , 2007, , .		4
42	One-step detection of oral ulcers and oral cancer derived exosomes on wedge-shaped and high magnetic field gradient mediated chip. Sensors and Actuators B: Chemical, 2022, 357, 131403.	4.0	4
43	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2755-2755.	11.1	3
44	Precise and convenient size barcode on microfluidic chip for multiplex biomarker detection. Analyst, The, 2021, 146, 5892-5897.	1.7	3
45	A Metamaterial with Dual-Band Perfect Terahertz Transmission. IOP Conference Series: Materials Science and Engineering, 2017, 250, 012019.	0.3	2
46	An automatic microfluidic sample transfer and introduction system. Microfluidics and Nanofluidics, 2014, 16, 101-108.	1.0	1
47	Early Cancer Diagnosis: Platelet–Leukocyte Hybrid Membrane oated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870241.	7.8	1
48	Controlled-Release of Materials in Calcium Alginate Microbeads Prepared by Microfluidic Device. , 2007, , .		0
49	Manipulation of Droplets in Micro-Channel Through Magnetic Field. , 2007, , .		0
50	The Observation of Bacteria and Yeast through Microfluidic Devices. , 2007, , .		0
51	A Smart Electrowetting Device Based on PDMS and Glass for Manipulating Cells in Droplet. , 2007, , .		0
52	Cover Picture: Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers (Angew. Chem. Int. Ed. 13/2011). Angewandte Chemie - International Edition, 2011, 50, 2857-2857.	7.2	0
53	Design of the New System of Verify Gas Relay. Applied Mechanics and Materials, 0, 446-447, 667-671.	0.2	0
54	Auto-Detecting System for Circulating Tumor Cells Based on LabView. Applied Mechanics and Materials, 0, 543-547, 1087-1090.	0.2	0

#	Article	IF	CITATIONS
55	Design of Insulation Resistance Measurement System for Electrical Steel Sheet Surface Coating. Applied Mechanics and Materials, 2014, 494-495, 895-898.	0.2	0
56	Real-Time Micro-Fluidic Chip Pressure Control System Base on the Optical Interference. Applied Mechanics and Materials, 2014, 494-495, 1274-1277.	0.2	0
57	A 3D-printed metamaterial with electromagnetically induced transmission. IOP Conference Series: Materials Science and Engineering, 2017, 250, 012046.	0.3	0