Dagang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027641/publications.pdf

Version: 2024-02-01

		201674	189892
50	3,149	27	50
papers	citations	h-index	g-index
5 1	5 1	F.1	4054
51	51	51	4054
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nanofibrous Mats for Particulate Matter Filtration. Industrial & Engineering Chemistry Research, 2021, 60, 7517-7534.	3.7	17
2	Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. Journal of Applied Polymer Science, 2021, 138, 51241.	2.6	30
3	Structure Color Tuners of Cholesteric Cellulose Nanocrystal. Industrial & Engineering Chemistry Research, 2021, 60, 8776-8787.	3.7	10
4	Sustainable iridescence of cast and shear coatings of cellulose nanocrystals. Carbohydrate Polymers, 2021, 273, 118628.	10.2	8
5	Anisotropic Structure and Properties of Chitin and Chitosan Nanofibril-Supported Starch Foams. ACS Sustainable Chemistry and Engineering, 2020, 8, 17387-17396.	6.7	14
6	Liquid Transport in Fibrillar Channels of Ion-Associated Cellular Nanowood Foams. ACS Applied Materials & Samp; Interfaces, 2020, 12, 58212-58222.	8.0	9
7	Non-isothermal crystallization kinetics of polyvinyl alcohol plasticized with glycerol and pentaerythritol. Journal of Polymer Research, 2020, 27, 1.	2.4	11
8	Chromium (III) coordination capacity of chitosan. International Journal of Biological Macromolecules, 2020, 148, 785-792.	7.5	11
9	Mesophase transition of cellulose nanocrystals aroused by the incorporation of two cellulose derivatives. Carbohydrate Polymers, 2020, 233, 115843.	10.2	21
10	Comparative study of carboxylic acid adsorption on calcite: l-malic acid, d-malic acid and succinic acid. Carbonates and Evaporites, 2019, 34, 1131-1139.	1.0	10
11	Lyotropic liquid crystal self-assembly of H2O2-hydrolyzed chitin nanocrystals. Carbohydrate Polymers, 2018, 196, 66-72.	10.2	19
12	Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydrate Polymers, 2017, 174, 39-47.	10.2	40
13	Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition. Chemosphere, 2017, 183, 419-428.	8.2	37
14	Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats. Biomacromolecules, 2017, 18, 3273-3279.	5.4	24
15	Effects of the coagulation temperature on the properties of wetâ€spun poly(vinyl alcohol)–graphene oxide fibers. Journal of Applied Polymer Science, 2017, 134, 45463.	2.6	7
16	Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydrate Polymers, 2017, 175, 223-230.	10.2	39
17	Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydrate Polymers, 2017, 174, 531-539.	10.2	57
18	Microfibrillar Polysaccharide-Derived Biochars as Sodium Benzoate Adsorbents. ACS Omega, 2017, 2, 2959-2966.	3.5	6

#	Article	IF	CITATIONS
19	Cellulose Nanocrystal/Poly(ethylene glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32565-32573.	8.0	116
20	Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohydrate Polymers, 2016, 144, 230-237.	10.2	69
21	Flexible fibers wet-spun from formic acid modified chitosan. Carbohydrate Polymers, 2016, 136, 1137-1143.	10.2	21
22	Structure and morphology of fractions separated from mechanical-assisted enzyme hydrolyzed chitin microfibrils. Cellulose, 2015, 22, 1-8.	4.9	15
23	Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: A comparative study. Polymer Science - Series A, 2014, 56, 856-863.	1.0	19
24	Recent Progress in Heavy Metal Extraction by Supercritical CO ₂ Fluids. Industrial & Engineering Chemistry Research, 2014, 53, 1866-1877.	3.7	80
25	Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: Adsorption and desorption performance. Carbohydrate Polymers, 2014, 111, 469-476.	10.2	141
26	Morphological, Mechanical and Thermal Study of ZnO Nanoparticle Reinforced Chitosan Based Transparent Biocomposite Films. Journal of the Institution of Engineers (India): Series D, 2014, 95, 35-41.	1.0	14
27	Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers. RSC Advances, 2014, 4, 30784.	3.6	41
28	Recent advances in bioâ€sourced polymeric carbohydrate/nanotube composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
29	Biodegradable Poly(vinyl alcohol) Foams Supported by Cellulose Nanofibrils: Processing, Structure, and Properties. Langmuir, 2014, 30, 9544-9550.	3.5	56
30	Structureâ€"color mechanism of iridescent cellulose nanocrystal films. RSC Advances, 2014, 4, 39322-39331.	3.6	73
31	Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Carbohydrate Polymers, 2013, 98, 483-489.	10.2	102
32	Adsorption Behavior of Heavy Metal lons from Aqueous Solution by Soy Protein Hollow Microspheres. Industrial & Description of the Microspheres and Science (1984).	3.7	119
33	Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers, 2013, 98, 562-567.	10.2	215
34	Facile Preparation of Soy Protein/Poly(vinyl alcohol) Blend Fibers with High Mechanical Performance by Wet-Spinning. Industrial & Engineering Chemistry Research, 2013, 52, 6177-6181.	3.7	20
35	Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose, 2013, 20, 2981-2989.	4.9	167
36	Bamboo fiber and its reinforced composites: structure and properties. Cellulose, 2012, 19, 1449-1480.	4.9	288

#	Article	lF	Citations
37	Structure and rheology of nanocrystalline cellulose. Carbohydrate Polymers, 2011, 84, 316-322.	10.2	192
38	Self-assembled liquid crystal film from mechanically defibrillated chitosan nanofibers. Carbohydrate Polymers, 2011, 84, 686-689.	10.2	22
39	Chitosan colloidal suspension composed of mechanically disassembled nanofibers. Journal of Colloid and Interface Science, 2011, 354, 637-643.	9.4	31
40	Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresource Technology, 2010, 101, 6235-6241.	9.6	114
41	Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 2010, 101, 2529-2536.	9.6	264
42	Selfâ∈Assembly of Nano Hydroxyapatite or Aragonite Induced by Molecular Recognition to Soy Globulin 7S or 11S. Macromolecular Rapid Communications, 2009, 30, 1498-1503.	3.9	13
43	Structure and properties of soy protein films plasticized with hydroxyamine. Journal of Applied Polymer Science, 2009, 111, 1549-1556.	2.6	49
44	Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science, 2009, 339, 117-124.	9.4	233
45	Coreâ€Shell Nanoblends from Soy Protein/Polystyrene by Emulsion Polymerization. Macromolecular Materials and Engineering, 2008, 293, 714-721.	3 . 6	21
46	Effects of Calcium Carbonate Polymorph on the Structure and Properties of Soy Proteinâ€Based Nanocomposites. Macromolecular Bioscience, 2008, 8, 401-409.	4.1	21
47	Structure and Properties of Blend Films Prepared from Castor Oil-Based Polyurethane/Soy Protein Derivative. Industrial & Engineering Chemistry Research, 2008, 47, 9330-9336.	3.7	33
48	Advances in Proteinous Biomaterials. Journal of Biobased Materials and Bioenergy, 2008, 2, 1-24.	0.3	111
49	Influence of different amides as plasticizer on the properties of soy protein plastics. Journal of Applied Polymer Science, 2007, 106, 130-137.	2.6	29
50	Structure and Properties of Soy Protein Plastics Plasticized with Acetamide. Macromolecular Materials and Engineering, 2006, 291, 820-828.	3.6	74