
David B Morton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ZO-1 protein Polychaetoid as an upstream regulator of the Hippo pathway in Drosophila. PLoS Genetics, 2021, 17, e1009894.	3.5	4
2	Deletion of a specific exon in the voltage-gated calcium channel, <i>cacophony</i> , causes disrupted locomotion in Drosophila larvae. Journal of Experimental Biology, 2019, 222, .	1.7	6
3	Opposing transcriptional and post-transcriptional roles for Scalloped in binary Hippo-dependent neural fate decisions. Developmental Biology, 2019, 455, 51-59.	2.0	7
4	Restoration of Motor Defects Caused by Loss of <i>Drosophila</i> TDP-43 by Expression of the Voltage-Gated Calcium Channel, <i>Cacophony</i> , in Central Neurons. Journal of Neuroscience, 2017, 37, 9486-9497.	3.6	7
5	Exploring the Interaction of Drosophila TDP-43 and the Type II Voltage-Gated Calcium Channel, Cacophony, in Regulating Motor Function and Behavior. Journal of Experimental Neuroscience, 2017, 11, 117906951774089.	2.3	2
6	Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects. PLoS ONE, 2017, 12, e0180828.	2.5	24
7	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
8	Role for Rab10 in Methamphetamine-Induced Behavior. PLoS ONE, 2015, 10, e0136167.	2.5	12
9	Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila, TDP-43 loss of function model of ALS. Brain Research, 2014, 1584, 39-51.	2.2	34
10	Comparison of Parallel High-Throughput RNA Sequencing Between Knockout of TDP-43 and Its Overexpression Reveals Primarily Nonreciprocal and Nonoverlapping Gene Expression Changes in the Central Nervous System of Drosophila. G3: Genes, Genomes, Genetics, 2012, 2, 789-802.	1.8	71
11	Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 717-727.	1.6	11
12	Behavioral responses to hypoxia and hyperoxia in Drosophila larvae. Fly, 2011, 5, 119-125.	1.7	17
13	Infertility and Male Mating Behavior Deficits Associated With Pde1c in <i>Drosophila melanogaster</i> . Genetics, 2010, 186, 159-165.	2.9	11
14	Behavioral Responses to Hypoxia in Drosophila Larvae Are Mediated by Atypical Soluble Guanylyl Cyclases. Genetics, 2010, 186, 183-196.	2.9	51
15	Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases. Neuron, 2009, 61, 865-879.	8.1	253
16	Synaptic transmission in neurons that express the Drosophilaatypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis. Journal of Experimental Biology, 2008, 211, 1645-1656.	1.7	19
17	Soluble guanylyl cyclases in invertebrates: Targets for NO and O2. Advances in Experimental Biology, 2007, 1, 65-82.	0.1	6
18	Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behaviors. Journal of Insect Physiology, 2006, 52, 340-348.	2.0	29

DAVID B MORTON

#	Article	IF	CITATIONS
19	Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster. Journal of Insect Science, 2005, 5, 12.	1.5	22
20	Atypical soluble guanylyl cyclases in Drosophila as neutral oxygen sensors and their involvement in gestation. BMC Pharmacology, 2005, 5, S7.	0.4	4
21	Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster. Journal of Insect Science, 2005, 5, 1-10.	0.9	8
22	Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system of Drosophila melanogaster. Journal of Experimental Biology, 2004, 207, 2323-2338.	1.7	24
23	Atypical Soluble Guanylyl Cyclases in Drosophila Can Function as Molecular Oxygen Sensors. Journal of Biological Chemistry, 2004, 279, 50651-50653.	3.4	58
24	Invertebrates Yield a Plethora of Atypical Guanylyl Cyclases. Molecular Neurobiology, 2004, 29, 097-116.	4.0	58
25	MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. Journal of Neurochemistry, 2003, 84, 363-372.	3.9	14
26	MsGC-β3 forms active homodimers and inactive heterodimers with NO-sensitive soluble guanylyl cyclase subunits. Journal of Experimental Biology, 2003, 206, 937-947.	1.7	21
27	Cyclic GMP regulation and function in insects. Advances in Insect Physiology, 2002, 29, 1-54.	2.7	25
28	Cellular signaling in eclosion hormone action. Journal of Insect Physiology, 2002, 48, 1-13.	2.0	25
29	Norepinephrine Increases Cyclic GMP Levels in Cerebellar Cells from Neuronal Nitric Oxide Synthase Knockout Mice. Journal of Neurochemistry, 2002, 71, 440-443.	3.9	13
30	Neurons involved in nitric oxide-mediated cGMP signaling in the tobacco hornworm,Manduca sexta. Journal of Comparative Neurology, 2000, 419, 422-438.	1.6	33
31	Identification of the cellular target for eclosion hormone in the abdominal transverse nerves of the tobacco hornworm,Manduca sexta. Journal of Comparative Neurology, 2000, 424, 339-355.	1.6	12
32	Identification of a Novel Guanylyl Cyclase That Is Related to Receptor Guanylyl Cyclases, but Lacks Extracellular and Transmembrane Domains. Journal of Biological Chemistry, 1999, 274, 4440-4446.	3.4	33
33	Identification and Characterization of a Novel Î ² Subunit of Soluble Guanylyl Cyclase That Is Active in the Absence of a Second Subunit and Is Relatively Insensitive to Nitric Oxide. Journal of Biological Chemistry, 1999, 274, 2525-2531.	3.4	52
34	Soluble guanylyl cyclases in Caenorhabditis elegans: NO is not the answer. Current Biology, 1999, 9, R546-R547.	3.9	45
35	The Nitric Oxide–cGMP Pathway May Mediate Communication between Sensory Afferents and Projection Neurons in the Antennal Lobe of <i>Manduca Sexta</i> . Journal of Neuroscience, 1998, 18, 7244-7255.	3.6	118
36	Eclosion Hormone Action on the Nervous System Annals of the New York Academy of Sciences, 1997, 814, 40-52.	3.8	14

DAVID B MORTON

#	Article	IF	CITATIONS
37	Up- and downregulation ofesr20, an ecdysteroid-regulated gene expressed in the tracheae ofmanduca sexta. Archives of Insect Biochemistry and Physiology, 1997, 34, 159-174.	1.5	7
38	Neuropeptide-stimulated cyclic guanosine monophosphate immunoreactivity in the neurosecretory terminals of a neurohemal organ. , 1996, 29, 341-353.		16
39	Expression of a developmentally regulated gene,Mng10, in identified neurosecretory cells in the CNS ofManduca sexta. , 1996, 30, 349-358.		5
40	Effect of cycloheximide on eclosion hormone sensitivity and the developmental appearance of the eclosion hormone and cGMP regulated phosphoproteins in the CNS of the tobacco hornworm,manduca sexta. Journal of Receptor and Signal Transduction Research, 1995, 15, 773-786.	2.5	11
41	Eclosion Hormone Stimulates Cyclic GMP Levels in Manduca sexta Nervous Tissue via Arachidonic Acid Metabolism with Little or No Contribution from the Production of Nitric Oxide. Journal of Neurochemistry, 1992, 59, 1522-1530.	3.9	45
42	Expression of an eclosion hormone gene in insect cells using baculovirus vectors. Insect Biochemistry, 1991, 21, 341-351.	1.8	43
43	Steroid regulation of the peptide-mediated increase in cyclic GMP in the nervous system of the hawkmoth,Manduca sexta. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1985, 157, 423-432.	1.6	57