
Bingjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027544/publications.pdf Version: 2024-02-01

RINCHE WANC

#	Article	IF	CITATIONS
1	Large-area display textiles integrated with functional systems. Nature, 2021, 591, 240-245.	27.8	550
2	Application Challenges in Fiber and Textile Electronics. Advanced Materials, 2020, 32, e1901971.	21.0	273
3	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	27.8	270
4	A Deep ycle Aqueous Zincâ€Ion Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 2273-2278.	13.8	257
5	Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure. Journal of the American Chemical Society, 2016, 138, 225-230.	13.7	234
6	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018, 6, 12932-12944.	10.3	218
7	Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process. Advanced Materials, 2015, 27, 7854-7860.	21.0	176
8	Largeâ€Area Supercapacitor Textiles with Novel Hierarchical Conducting Structures. Advanced Materials, 2016, 28, 8431-8438.	21.0	158
9	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	13.8	119
10	A Oneâ€Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency. Angewandte Chemie - International Edition, 2017, 56, 12940-12945.	13.8	112
11	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	13.8	111
12	Industrial scale production of fibre batteries by a solution-extrusion method. Nature Nanotechnology, 2022, 17, 372-377.	31.5	110
13	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	10.3	103
14	A Mechanically Actuating Carbonâ€Nanotube Fiber in Response to Water and Moisture. Angewandte Chemie - International Edition, 2015, 54, 14880-14884.	13.8	93
15	A fiber-shaped solar cell showing a record power conversion efficiency of 10%. Journal of Materials Chemistry A, 2018, 6, 45-51.	10.3	93
16	An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. Journal of Materials Chemistry A, 2017, 5, 925-930.	10.3	78
17	A triboelectric textile templated by a three-dimensionally penetrated fabric. Journal of Materials Chemistry A, 2016, 4, 6077-6083.	10.3	71
18	A Deepâ€Cycle Aqueous Zincâ€Ion Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie, 2020, 132, 2293-2298.	2.0	71

BINGJIE WANG

#	Article	IF	CITATIONS
19	Li O ₂ Batteries Efficiently Working at Ultra‣ow Temperatures. Advanced Functional Materials, 2020, 30, 2001619.	14.9	61
20	A three-dimensionally stretchable high performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14968-14973.	10.3	52
21	A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. Journal of Materials Chemistry A, 2021, 9, 6811-6818.	10.3	51
22	Highâ€Efficiency and Stable Liâ^'CO ₂ Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
23	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	2.0	49
24	Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nature Protocols, 2017, 12, 1349-1358.	12.0	48
25	Chemicalâ€ŧoâ€Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635.	21.0	45
26	Making Fiberâ€ s haped Ni//Bi Battery Simultaneously with High Energy Density, Power Density, and Safety. Advanced Functional Materials, 2020, 30, 1905971.	14.9	40
27	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie - International Edition, 2021, 60, 17419-17425.	through	39
28	The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon, 2018, 133, 384-389.	10.3	32
29	Multicolor, Fluorescent Supercapacitor Fiber. Small, 2018, 14, e1702052.	10.0	30
30	A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon, 2019, 149, 63-70.	10.3	30
31	A Novel Slicing Method for Thin Supercapacitors. Advanced Materials, 2016, 28, 6429-6435.	21.0	28
32	Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Science China Materials, 2019, 62, 955-964.	6.3	26
33	A perovskite solar cell textile that works at â^'40 to 160 °C. Journal of Materials Chemistry A, 2020, 8, 5476-5483.	10.3	25
34	A biodegradable and rechargeable fiber battery. Journal of Materials Chemistry A, 2021, 9, 10104-10109.	10.3	23
35	Effect of Gel Solution Concentration on the Structure and Properties of Gel-Spun Ultrahigh Molecular Weight Polyethylene Fibers. Industrial & Engineering Chemistry Research, 2016, 55, 8357-8363.	3.7	22
36	Hydrogel Cryoâ€Microtomy Continuously Making Soft Electronic Devices. Advanced Functional Materials, 2021, 31, 2008355.	14.9	19

BINGJIE WANG

#	Article	IF	CITATIONS
37	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	2.0	18
38	Rechargeable Microâ \in Batteries for Wearable and Implantable Applications. Small Structures, 2022, 3, .	12.0	16
39	In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycleâ€Life Energy Storage. Small, 2019, 15, e1905903.	10.0	11
40	A Oneâ€Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency. Angewandte Chemie, 2017, 129, 13120-13125.	2.0	9
41	Epitaxial crystallization of precisely bromine-substituted polyethylene induced by carbon nanotubes and graphene. RSC Advances, 2017, 7, 17640-17649.	3.6	8
42	Programmable actuating systems based on swimming fiber robots. Carbon, 2018, 139, 241-247.	10.3	7
43	Lithiumâ€Metal Anodes Working at 60â€mA cm ^{â^'2} and 60â€mAh cm ^{â^'2} Nanoscale Lithiumâ€Ion Adsorbing. Angewandte Chemie, 2021, 133, 17559-17565.	through 2.0	7
44	Enhanced cathode integrity for zinc–manganese oxide fiber batteries by a durable protective layer. Journal of Materials Chemistry A, 2022, 10, 10201-10208.	10.3	7
45	Highâ€Efficiency and Stable Li O2 Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie, 0, , .	2.0	6
46	The Fabrication of Multifunctional SLIPS Films by Electrospinning. ChemNanoMat, 2017, 3, 869-873.	2.8	5
47	Boosting Cycling Stability and Rate Capability of Li–CO ₂ Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angewandte Chemie, 2022, 134, .	2.0	4
48	Tailorable coaxial carbon nanocables with high storage capabilities. Journal of Materials Chemistry A, 2017, 5, 22125-22130.	10.3	3
49	Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2021, , .	3.3	3
50	Frontispiece: Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2022, 28, .	3.3	0