William M Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances, 2022, 8, eabj1570.	4.7	19
2	Type 2C protein phosphatase clade D family members dephosphorylate guard cell plasma membrane H+-ATPase. Plant Physiology, 2022, 188, 2228-2240.	2.3	15
3	A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. New Phytologist, 2022, 233, 1732-1749.	3.5	4
4	Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599, 273-277.	13.7	128
5	TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature, 2021, 599, 278-282.	13.7	125
6	SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. Plant Physiology, 2021, 185, 256-273.	2.3	35
7	Rapid Auxin-Mediated Cell Expansion. Annual Review of Plant Biology, 2020, 71, 379-402.	8.6	128
8	Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity. Plant Physiology, 2019, 181, 353-366.	2.3	29
9	BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling. PLoS Genetics, 2019, 15, e1007904.	1.5	76
10	A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLoS Genetics, 2018, 14, e1007455.	1.5	92
11	Constitutive Expression of Arabidopsis <i>SMALL AUXIN UP RNA19</i> (<i>SAUR19</i>) in Tomato Confers Auxin-Independent Hypocotyl Elongation. Plant Physiology, 2017, 173, 1453-1462.	2.3	67
12	Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants. Journal of Proteome Research, 2016, 15, 851-867.	1.8	33
13	Auxin: Shape matters. Nature Plants, 2015, 1, 15097.	4.7	5
14	SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. Molecular Plant, 2015, 8, 1153-1164.	3.9	386
15	Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Current Opinion in Plant Biology, 2015, 28, 68-75.	3.5	142
16	Alternative Splicing of Arabidopsis IBR5 Pre-mRNA Generates Two IBR5 Isoforms with Distinct and Overlapping Functions. PLoS ONE, 2014, 9, e102301.	1.1	19
17	Composition, Roles, and Regulation of Cullin-Based Ubiquitin E3 Ligases. The Arabidopsis Book, 2014, 12, e0175.	0.5	53
18	SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 2129-2142.	3.1	392

WILLIAM M GRAY

#	Article	IF	CITATIONS
19	Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13994-13999.	3.3	36
20	The eta7/csn3-3 Auxin Response Mutant of Arabidopsis Defines a Novel Function for the CSN3 Subunit of the COP9 Signalosome. PLoS ONE, 2013, 8, e66578.	1.1	13
21	The <i>SAUR19</i> subfamily of <i>SMALL AUXIN UP RNA</i> genes promote cell expansion. Plant Journal, 2012, 70, 978-990.	2.8	359
22	An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research. Proteome Science, 2011, 9, 9.	0.7	37
23	PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20231-20235.	3.3	562
24	Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2199-2208.	1.2	50
25	Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant Journal, 2010, 63, 680-695.	2.8	44
26	<i>Arabidopsis PIS1</i> encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10749-10753.	3.3	183
27	SUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response. Plant Physiology, 2010, 152, 1889-1900.	2.3	45
28	Auxin Signal Transduction. , 2010, , 282-307.		3
29	Arabidopsis <i>IAR4</i> Modulates Auxin Response by Regulating Auxin Homeostasis. Plant Physiology, 2009, 150, 748-758.	2.3	59
30	Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22540-22545.	3.3	403
31	CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock. Plant Journal, 2008, 55, 568-579.	2.8	41
32	Plant hormone receptors: new perceptions. Genes and Development, 2008, 22, 2139-2148.	2.7	67
33	Genetic analysis of CAND1–CUL1 interactions in <i>Arabidopsis</i> supports a role for CAND1-mediated cycling of the SCF ^{TIR1} complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8470-8475.	3.3	50
34	A New CULLIN 1 Mutant Has Altered Responses to Hormones and Light in Arabidopsis. Plant Physiology, 2007, 143, 684-696.	2.3	74
35	A Gain-of-Function Mutation in the Arabidopsis Pleiotropic Drug Resistance Transporter PDR9 Confers Resistance to Auxinic Herbicides. Plant Physiology, 2006, 142, 63-74.	2.3	147
36	Auxin signaling. Current Opinion in Plant Biology, 2006, 9, 448-453.	3.5	248

WILLIAM M GRAY

#	Article	IF	CITATIONS
37	SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana L. Heyn Journal of Experimental Botany, 2006, 57, 865-875.	2.4	56
38	Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant Journal, 2005, 43, 371-383.	2.8	81
39	Hormonal Regulation of Plant Growth and Development. PLoS Biology, 2004, 2, e311.	2.6	241
40	Arabidopsis ETA2, an Apparent Ortholog of the Human Cullin-Interacting Protein CAND1, Is Required for Auxin Responses Mediated by the SCFTIR1 Ubiquitin Ligase. Plant Cell, 2004, 16, 1883-1897.	3.1	104
41	Arabidopsis SGT1b Is Required for SCFTIR1-Mediated Auxin Response. Plant Cell, 2003, 15, 1310-1319.	3.1	194
42	AXR1-ECR1–Dependent Conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 Is Required for Auxin Response. Plant Cell, 2002, 14, 421-433.	3.1	221
43	Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function. Plant Cell, 2002, 14, 2137-2144.	3.1	146
44	Plant Defence: A New Weapon In The Arsenal. Current Biology, 2002, 12, R352-R354.	1.8	17
45	Phylogenetic footprinting reveals multiple regulatory elements involved in control of the meiotic recombination gene,REC102. Yeast, 2002, 19, 99-114.	0.8	11
46	Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature, 2001, 414, 271-276.	13.7	1,205
47	Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response. Science, 2001, 292, 1379-1382.	6.0	451
48	Function of the ubiquitin–proteasome pathway in auxin response. Trends in Biochemical Sciences, 2000, 25, 133-138.	3.7	174
49	Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes and Development, 1999, 13, 1678-1691.	2.7	454
50	Biochemical genetics of plant growth. Current Opinion in Biotechnology, 1998, 9, 196-201.	3.3	10
51	The TIR1 protein of <i>Arabidopsis</i> functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes and Development, 1998, 12, 198-207.	2.7	582
52	High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7197-7202.	3.3	567
53	Activated Alleles of Yeast SLN1 Increase Mcm1-dependent Reporter Gene Expression and Diminish Signaling through the Hog1 Osmosensing Pathway. Journal of Biological Chemistry, 1997, 272, 13365-13371.	1.6	49
54	Temperature-sensitive Yeast GPI Anchoring Mutants gpi2 and gpi3 Are Defective in the Synthesis of N-Acetylglucosaminyl Phosphatidylinositol Journal of Biological Chemistry, 1995, 270, 13029-13035.	1.6	122

#	Article	IF	CITATIONS
55	The Saccharomyces cerevisiae SPT14 gene is essential for normal expression of the yeast transposon, Ty, as well as for expression of the HIS4 gene and several genes in the mating pathway. Molecular Genetics and Genomics, 1991, 230, 310-320.	2.4	33