Gonghuan Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3027372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Central Asia's Water Tower: Past, Present and Future. Scientific Reports, 2016, 6, 35458.	1.6	195
2	Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12345-12356.	1.2	193
3	Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 2017, 7, 1316.	1.6	122
4	Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5059-5069.	1.2	76
5	Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges. Hydrology and Earth System Sciences, 2017, 21, 669-684.	1.9	62
6	The impact of climate change and human activities on the Aral Sea Basin over the past 50Âyears. Atmospheric Research, 2020, 245, 105125.	1.8	62
7	Agricultural water demands in Central Asia under 1.5â€ [−] °C and 2.0â€ [−] °C global warming. Agricultural Water Management, 2020, 231, 106020.	2.4	55
8	Recent recovery of surface wind speed in northwest China. International Journal of Climatology, 2018, 38, 4445-4458.	1.5	49
9	Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. Journal of Arid Land, 2019, 11, 161-179.	0.9	49
10	Development and utilization of water resources and assessment of water security in Central Asia. Agricultural Water Management, 2020, 240, 106297.	2.4	46
11	Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrology and Earth System Sciences, 2016, 20, 2169-2178.	1.9	43
12	Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	43
13	Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecological Indicators, 2020, 111, 105997.	2.6	40
14	Use of ² H and ¹⁸ O stable isotopes to investigate water sources for different ages of <i>Populus euphratica</i> along the lower Heihe River. Ecological Research, 2015, 30, 581-587.	0.7	36
15	How Hydrologic Processes Differ Spatially in a Large Basin: Multisite and Multiobjective Modeling in the Tarim River Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7098-7113.	1.2	36
16	Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China. Sustainability, 2019, 11, 4941.	1.6	32
17	Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability, 2020, 1, 20-30.	1.1	29
18	Variation in agricultural water demand and its attributions in the arid Tarim River Basin. Journal of Agricultural Science, 2018, 156, 301-311.	0.6	28

GONGHUAN FANG

#	Article	IF	CITATIONS
19	Impact of GCM structure uncertainty on hydrological processes in an arid area of China. Hydrology Research, 2018, 49, 893-907.	1.1	27
20	Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sensing, 2020, 12, 2704.	1.8	24
21	Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan. Acta Geophysica, 2019, 67, 921-938.	1.0	23
22	Scenario-based runoff prediction for the Kaidu River basin of the Tianshan Mountains, Northwest China. Environmental Earth Sciences, 2016, 75, 1.	1.3	21
23	Study on the utilization efficiency of land and water resources in the Aral Sea Basin, Central Asia. Sustainable Cities and Society, 2019, 51, 101693.	5.1	21
24	Developing a Long Short-Term Memory (LSTM)-Based Model for Reconstructing Terrestrial Water Storage Variations from 1982 to 2016 in the Tarim River Basin, Northwest China. Remote Sensing, 2021, 13, 889.	1.8	21
25	Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. Journal of Hydrology, 2022, 606, 127457.	2.3	19
26	Adaptability of machine learning methods and hydrological models to discharge simulations in data-sparse glaciated watersheds. Journal of Arid Land, 2021, 13, 549-567.	0.9	18
27	Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia. Hydrology and Earth System Sciences, 2021, 25, 3281-3299.	1.9	18
28	Contribution of meteorological input in calibrating a distributed hydrologic model in a watershed in the Tianshan Mountains, China. Environmental Earth Sciences, 2015, 74, 2413-2424.	1.3	17
29	Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. Journal of Arid Land, 2017, 9, 622-634.	0.9	17
30	Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China. Agricultural Water Management, 2022, 271, 107811.	2.4	13
31	The Temporal and Spatial Variations in Lake Surface Areas in Xinjiang, China. Water (Switzerland), 2018, 10, 431.	1.2	11
32	Tree rings: A key ecological indicator for reconstruction of groundwater depth in the lower Tarim River, Northwest China. Ecohydrology, 2019, 12, e2142.	1.1	11
33	Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Clacierized Watershed in Central Asia. Water (Switzerland), 2019, 11, 554.	1.2	10
34	The Uncertainty of Penmanâ€Monteith Method and the Energy Balance Closure Problem. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7433-7443.	1.2	9
35	Water use efficiency data from 2000 to 2019 in measuring progress towards SDGs in Central Asia. Big Earth Data, 2022, 6, 90-102.	2.0	8
36	Water and Ecological Security at the Heart of China's Silk Road Economic Belt. , 2019, , 281-306.		1

#	Article	IF	CITATIONS
37	Quantifying the magnitude of the impact of human activities on runoff consumption in the midstream of Shiyang River, China. , 2012, , .		0
38	Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China. Remote Sensing, 2021, 13, 3764.	1.8	0