
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3026449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted isolation based on metagenomeâ€assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere. Environmental Microbiology, 2021, 23, 3585-3598.	1.8	23
2	Desulfovibrio Isolate from the Microbiote of Children with Autistic Spectrum Disorders Immobilizes Iron in Poorly Soluble Crystalline Sulfides. Microbiology, 2021, 90, 268-271.	0.5	3
3	Thermophilic Chloroflexi Dominate in the Microbial Community Associated with Coal-Fire Gas Vents in the Kuznetsk Coal Basin, Russia. Microorganisms, 2021, 9, 948.	1.6	8
4	Isolation of a Novel Chemolithothrophic Sulfate-Reducing Firmicute from a Tyumen Thermal Borehole. Microbiology, 2021, 90, 397-400.	0.5	1
5	A Novel Medium for Cultivation of "Desulforudis audaxviator― Microbiology, 2021, 90, 401-404.	0.5	2
6	Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Scientific Reports, 2021, 11, 10720.	1.6	18
7	Desulfosporosinus metallidurans sp. nov., an acidophilic, metal-resistant sulfate-reducing bacterium from acid mine drainage. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	18
8	The Microbial Community of Poultry Farm Waste and Its Role in Hydrogen Sulfide Production. Microbiology, 2021, 90, 507-511.	0.5	2
9	Metagenomic Analysis of the Microbial Community in the Underground Coal Fire Area (Kemerovo) Tj ETQq1 1 Aquificae, and Firmicutes. Microbiology, 2021, 90, 578-587.	0.784314 r 0.5	gBT /Overloc 5
10	Comparative Genome Analysis of the Genus Thiothrix Involving Three Novel Species, Thiothrix subterranea sp. nov. Ku-5, Thiothrix litoralis sp. nov. AS and "Candidatus Thiothrix anitrata―sp. nov. A52, Revealed the Conservation of the Pathways of Dissimilatory Sulfur Metabolism and Variations in the Genetic Inventory for Nitrogen Metabolism and Autotrophic Carbon Fixation. Frontiers in Microbiology, 2021, 12, 760289.	1.5	22
11	Desulfovibrio desulfuricans AY5 Isolated from a Patient with Autism Spectrum Disorder Binds Iron in Low-Soluble Greigite and Pyrite. Microorganisms, 2021, 9, 2558.	1.6	6
12	Diversity of Eukaryotic Microorganisms in the Drainage Waters of a Coal Open-Cast Mine. Microbiology, 2020, 89, 641-646.	0.5	4
13	Copper Precipitation as Insoluble Oxalates by Thermotolerant Aspergillus spp. from Burning Wastes of Coal Mining. Microbiology, 2020, 89, 498-501.	0.5	4
14	Microbial Life in the Deep Subsurface Aquifer Illuminated by Metagenomics. Frontiers in Microbiology, 2020, 11, 572252.	1.5	48
15	Application of Microbial Mats for the Isolation of Spore-Forming Prokaryotes from Deep Biosphere. Microbiology, 2020, 89, 789-792.	0.5	3
16	Sulfate Reduction in Underground Horizons of a Flooded Coal Mine in Kuzbass. Microbiology, 2020, 89, 542-550.	0.5	4
17	Genome Analysis of a Member of the Uncultured Phylum Riflebacteria Revealed Pathways of Organotrophic Metabolism and Dissimilatory Iron Reduction. Microbiology, 2020, 89, 328-336.	0.5	16
18	Complete Genome of a Member of a New Bacterial Lineage in the Microgenomates Group Reveals an Unusual Nucleotide Composition Disparity Between Two Strands of DNA and Limited Metabolic Potential. Microorganisms, 2020, 8, 320.	1.6	23

#	Article	IF	CITATIONS
19	Complete Genome Sequence of an Uncultured Bacterium of the Candidate Phylum Bipolaricaulota. Microbiology, 2019, 88, 461-468.	0.5	8
20	Isolation of New Thermophilic Sulfidogens from Microbial Mat Associated with Groundwater Discharge in the Tunkin Valley. Microbiology, 2019, 88, 642-645.	0.5	2
21	Genomes of three bacteriophages from the deep subsurface aquifer. Data in Brief, 2019, 22, 488-491.	0.5	5
22	Genome of a Member of the Candidate Archaeal Phylum Verstraetearchaeota from a Subsurface Thermal Aquifer Revealed Pathways of Methyl-Reducing Methanogenesis and Fermentative Metabolism. Microbiology, 2019, 88, 316-323.	0.5	6
23	Selection of a Microbial Community in the Course of Formation of Acid Mine Drainage. Microbiology, 2019, 88, 292-299.	0.5	10
24	A Novel Bacteriophage of the Order Caudovirales from the Soil Metagenome in the Area of an Underground Coal Seam Fire. Microbiology, 2019, 88, 240-243.	0.5	1
25	Sulfur-Oxidizing Bacteria Dominate in the Water from a Flooded Coal Mine Shaft in Kuzbass. Microbiology, 2019, 88, 120-123.	0.5	8
26	Domestication of previously uncultivated <i>Candidatus</i> Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME Journal, 2019, 13, 1947-1959.	4.4	48
27	Isolation, characterization, and genome insights into an anaerobic sulfidogenic Tissierella bacterium from Cu-bearing coins. Anaerobe, 2019, 56, 66-77.	1.0	11
28	Phylogeny and physiology of candidate phylum BRC1 inferred from the first complete metagenome-assembled genome obtained from deep subsurface aquifer. Systematic and Applied Microbiology, 2019, 42, 67-76.	1.2	38
29	Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles, 2019, 23, 189-200.	0.9	74
30	Isolation, Characterization, and Metal Response of Novel, Acid-Tolerant Penicillium spp. from Extremely Metal-Rich Waters at a Mining Site in Transbaikal (Siberia, Russia). Microbial Ecology, 2018, 76, 911-924.	1.4	18
31	A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiology Ecology, 2018, 94, .	1.3	38
32	Lignite coal burning seam in the remote Altai Mountains harbors a hydrogen-driven thermophilic microbial community. Scientific Reports, 2018, 8, 6730.	1.6	19
33	Genome sequence of the copper resistant and acid-tolerant Desulfosporosinus sp. BC isolated from the tailings of a molybdenum-tungsten mine in the Transbaikal area. Genomics Data, 2017, 11, 106-108.	1.3	8
34	Uncultured bacteria and methanogenic archaea predominate in the microbial community of Western Siberian deep subsurface aquifer. Microbiology, 2017, 86, 412-415.	0.5	15
35	Genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. Genomics Data, 2017, 11, 125-127.	1.3	3
36	Sulfate-reducing bacteria in the microbial community of acidic drainage from a gold deposit tailing storage. Microbiology, 2017, 86, 286-288.	0.5	2

#	Article	IF	CITATIONS
37	Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH-gradient bioreactor. Antonie Van Leeuwenhoek, 2017, 110, 1669-1679.	0.7	6
38	Metagenome Sequence of a Microbial Community from the Gold Mine Tailings in the Kuzbass Area, Russia. Genome Announcements, 2017, 5, .	0.8	5
39	Variability of the composition of the microbial community of the deep subsurface thermal aquifer in Western Siberia. Microbiology, 2017, 86, 765-772.	0.5	15
40	Metagenome of the Siberian Underground Water Reservoir. Genome Announcements, 2017, 5, .	0.8	9
41	Characterization and Genome Analysis of the First Facultatively Alkaliphilic Thermodesulfovibrio Isolated from the Deep Terrestrial Subsurface. Frontiers in Microbiology, 2016, 7, 2000.	1.5	62
42	Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study. Frontiers in Microbiology, 2016, 7, 2101.	1.5	27
43	Components of antioxidant systems in the cells of aerotolerant sulfate-reducing bacteria of the genus Desulfovibrio (strains A2 and TomC) isolated from metal mining waste. Microbiology, 2016, 85, 649-657.	0.5	2
44	The complete mitochondrial genome of the acid-tolerant fungus Penicillium ShG4C. Genomics Data, 2016, 10, 141-143.	1.3	3
45	Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit. Microbiology, 2016, 85, 745-751.	0.5	19
46	Genomic insights into a new acidophilic, copper-resistant <i>Desulfosporosinus</i> isolate from the oxidized tailings area of an abandoned gold mine. FEMS Microbiology Ecology, 2016, 92, fiw111.	1.3	39
47	A novel uncultured bacterium of the family Gallionellaceae: Description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage. Microbiology, 2016, 85, 449-461.	0.5	23
48	<i>Firmicutes</i> is an Important Component of Microbial Communities in Water-Injected and Pristine Oil Reservoirs, Western Siberia, Russia. Geomicrobiology Journal, 2016, 33, 387-400.	1.0	25
49	Effect of Tree Species on Enzyme Secretion by the Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes). International Journal of Medicinal Mushrooms, 2016, 18, 637-644.	0.9	2
50	A Novel Uncultured Bacterium of the Family Gallionellaceae: Description and Genome Reconstruction Based on the Metagenomic Analysis of Microbial Community in Acid Mine Drainage. Mikrobiologija, 2016, 85, 421-435.	0.1	7
51	Active sulfate reduction in acidic sediments of gold mine tailings. Microbiology, 2015, 84, 453-455.	0.5	1
52	Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment. FEMS Microbiology Letters, 2015, 362, 1-3.	0.7	16
53	Diversity of copper proteins and copper homeostasis systems in Melioribacter roseus, a facultatively anaerobic thermophilic member of the new phylum Ignavibacteriae. Microbiology, 2015, 84, 135-143.	0.5	4
54	An acidophilic Desulfosporosinus isolated from the oxidized mining wastes in the Transbaikal area. Microbiology, 2015, 84, 677-686.	0.5	10

#	Article	IF	CITATIONS
55	Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnology Letters, 2014, 36, 2283-2289.	1.1	7
56	Characteristics of the new plasmid, pMTB1, from the metagenome of the microbial community of underground thermal waters of Western Siberia. Biology Bulletin, 2014, 41, 223-227.	0.1	0
57	Characterization of <i><scp>M</scp>elioribacter roseus</i> gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class <i><scp>I</scp>gnavibacteria</i> , and a proposal of a novel bacterial phylum <i><scp>I</scp></i> /i> <i>gnavibacteriae</i> . Environmental Microbiology, 2013, 15, 1759-1771.	1.8	228
58	Characterization of precipitates formed by H2S-producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste. Antonie Van Leeuwenhoek, 2013, 103, 1221-1234.	0.7	35
59	Genome Sequence of Desulfosporosinus sp. OT, an Acidophilic Sulfate-Reducing Bacterium from Copper Mining Waste in Norilsk, Northern Siberia. Journal of Bacteriology, 2011, 193, 6104-6105.	1.0	33
60	Genome Sequence of Desulfovibrio sp. A2, a Highly Copper Resistant, Sulfate-Reducing Bacterium Isolated from Effluents of a Zinc Smelter at the Urals. Journal of Bacteriology, 2011, 193, 6793-6794.	1.0	14
61	The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology, 2010, 79, 96-105.	0.5	16
62	Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia. Microbiology, 2009, 78, 483-491.	0.5	23
63	Precipitation of Cu-Sulfides by Copper-Tolerant <i>Desulfovibrio</i> Isolates. Geomicrobiology Journal, 2008, 25, 219-227.	1.0	26
64	Bacterial oxidation of ferrous iron at low temperatures. Biotechnology and Bioengineering, 2007, 97, 1470-1478.	1.7	56
65	Distribution, diversity, and activity of sulfate-reducing bacteria in the water column in Gek-Gel lake, Azerbaijan. Microbiology, 2006, 75, 82-89.	0.5	28
66	Formation of Covellite (CuS) Under Biological Sulfate-Reducing Conditions. Geomicrobiology Journal, 2006, 23, 613-619.	1.0	42
67	Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia. Geomicrobiology Journal, 2005, 22, 11-25.	1.0	38
68	The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Applied Geochemistry, 2004, 19, 1905-1926.	1.4	25
69	Microbial Processes of the Carbon and Sulfur Cycles in Lake Shira (Khakasia). Microbiology, 2003, 72, 221-229.	0.5	22
70	Copper resistance in Desulfovibrio strain R2. Antonie Van Leeuwenhoek, 2003, 83, 99-106.	0.7	26
71	Alkaline mine drainage from metal sulphide and coal mines: examples from Svalbard and Siberia. Geological Society Special Publication, 2002, 198, 287-296.	0.8	9
72	Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Applied Microbiology and Biotechnology, 2002, 58, 482-486.	1.7	50

#	Article	IF	CITATIONS
73	Groundwater Contamination from Rural Pit Latrines: Examples from Siberia and Kosova. Water and Environment Journal, 2002, 16, 147-152.	1.0	41
74	Environmental Protection in the Tomsk Region of the Russian Federation: A Case Study. Environmental Management, 2000, 26, 35-46.	1.2	1
75	Environmental Protection in the Tomsk Region of the Russian Federation: A Case Study. Environmental Management, 2000, 26, 585-585.	1.2	0