
Indrasis Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3026152/publications.pdf Version: 2024-02-01

ΙΝΠΡΛΟΙΟ ΠΛΟ

#	Article	IF	CITATIONS
1	Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management, 2022, 316, 115295.	3.8	131
2	Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 7501-7510.	3.8	96
3	Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering, 2020, 38, 101566.	2.6	85
4	Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics, 2020, 26, 3061-3072.	1.2	78
5	Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chemical Physics Letters, 2020, 751, 137536.	1.2	65
6	Synthesis and Application of Zirconium Metal–Organic Framework in Microbial Fuel Cells as a Cost-Effective Oxygen Reduction Catalyst with Competitive Performance. ACS Applied Energy Materials, 2020, 3, 3512-3520.	2.5	63
7	On-Site Sanitary Wastewater Treatment System Using 720-L Stacked Microbial Fuel Cell: Case Study. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	59
8	Synthesis of bimetallic iron ferrite Co0.5Zn0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 19196-19205.	3.8	54
9	Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. Materials Science for Energy Technologies, 2019, 2, 687-696.	1.0	51
10	Ameliorated performance of a microbial fuel cell operated with an alkali pre-treated clayware ceramic membrane. International Journal of Hydrogen Energy, 2020, 45, 16787-16798.	3.8	50
11	Degradation of 2,4-dichlorophenoxyacetic acid by UV 253.7 and UV-H2O2: Reaction kinetics and effects of interfering substances. Emerging Contaminants, 2019, 5, 53-60.	2.2	40
12	Synthesis of Tungstate Oxide/Bismuth Tungstate Composite and Application in Microbial Fuel Cell as Superior Low-Cost Cathode Catalyst than Platinum. Journal of the Electrochemical Society, 2018, 165, G146-G153.	1.3	34
13	Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. Journal of Environmental Chemical Engineering, 2020, 8, 104028.	3.3	32
14	Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell. Environmental Technology (United Kingdom), 2020, 41, 1209-1218.	1.2	26
15	Proficient Sanitary Wastewater Treatment in Laboratory and Field-Scale Microbial Fuel Cell with Anti-Biofouling Cu _{0.5} Mn _{0.5} Fe ₂ O ₄ as Cathode Catalyst. Journal of the Electrochemical Society, 2021, 168, 054519.	1.3	25
16	Application of Low-Cost Transition Metal Based Co0.5Zn0.5Fe2O4 as Oxygen Reduction Reaction Catalyst for Improving Performance of Microbial Fuel Cell. MRS Advances, 2018, 3, 3171-3179.	0.5	14