
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3026028/publications.pdf Version: 2024-02-01

RAKESH & SINCH

#	Article	IF	CITATIONS
1	Direct Comparison of Chol-siRNA Polyplexes and Chol-DsiRNA Polyplexes Targeting STAT3 in a Syngeneic Murine Model of TNBC. Non-coding RNA, 2022, 8, 8.	1.3	0
2	Differential expression profile of CXC-receptor-2 ligands as potential biomarkers in pancreatic ductal adenocarcinoma American Journal of Cancer Research, 2022, 12, 68-90.	1.4	0
3	Plexin-B3 Regulates Cellular Motility, Invasiveness, and Metastasis in Pancreatic Cancer. Cancers, 2021, 13, 818.	1.7	7
4	Host Cxcr2-Dependent Regulation of Pancreatic Cancer Growth, Angiogenesis, and Metastasis. American Journal of Pathology, 2021, 191, 759-771.	1.9	17
5	Preliminary preclinical study of Chol-DsiRNA polyplexes formed with PLL[30]-PEG[5K] for the RNAi-based therapy of breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102363.	1.7	4
6	Polycation fluorination improves intraperitoneal siRNA delivery in metastatic pancreatic cancer. Journal of Controlled Release, 2021, 333, 139-150.	4.8	18
7	Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer and Metastasis Reviews, 2021, 40, 447-476.	2.7	24
8	Abstract 3196: Soluble factors released by pancreatic cancer cells enhance neutrophil survival. , 2021, , .		0
9	Abstract 1087: CXCR2 and its ligands modulate chemotherapy resistance in pancreatic ductal adenocarcinoma. , 2021, , .		0
10	IL-17–CXC Chemokine Receptor 2 Axis Facilitates Breast Cancer Progression by Up-Regulating Neutrophil Recruitment. American Journal of Pathology, 2020, 190, 222-233.	1.9	49
11	Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano, 2020, 14, 255-271.	7.3	100
12	Breast Cancer Cell–Neutrophil Interactions Enhance Neutrophil Survival and Pro-Tumorigenic Activities. Cancers, 2020, 12, 2884.	1.7	33
13	CXCR2 signaling promotes secretory cancerâ€associated fibroblasts in pancreatic ductal adenocarcinoma. FASEB Journal, 2020, 34, 9405-9418.	0.2	43
14	Neutrophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 1-20.	0.8	80
15	Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers, 2019, 11, 564.	1.7	245
16	Cancer-Associated Fibroblasts Enhance Survival and Progression of the Aggressive Pancreatic Tumor Via FGF-2 and CXCL8. Cancer Microenvironment, 2019, 12, 37-46.	3.1	32
17	Cancer-Associated Fibroblasts' Functional Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancers, 2019, 11, 290.	1.7	34
18	CXCR2: A Novel Mediator of Mammary Tumor Bone Metastasis. International Journal of Molecular Sciences, 2019, 20, 1237.	1.8	18

#	Article	IF	CITATIONS
19	Complexation of Chol-DsiRNA in place of Chol-siRNA greatly increases the duration of mRNA suppression by polyplexes of PLL(30)-PEG(5K) in primary murine syngeneic breast tumors after i.v. administration. International Journal of Pharmaceutics, 2018, 543, 130-138.	2.6	3
20	Pathological and functional significance of Semaphorin-5A in pancreatic cancer progression and metastasis. Oncotarget, 2018, 9, 5931-5943.	0.8	22
21	Semaphorin-5A maintains epithelial phenotype of malignant pancreatic cancer cells. BMC Cancer, 2018, 18, 1283.	1.1	25
22	Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions. Cancer Research, 2018, 78, 5600-5617.	0.4	72
23	Micellar Delivery of miR-34a Modulator Rubone and Paclitaxel in Resistant Prostate Cancer. Cancer Research, 2017, 77, 3244-3254.	0.4	60
24	Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. , 2017, 179, 158-170.		126
25	Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Frontiers in Immunology, 2017, 8, 1228.	2.2	165
26	Modulation of p73 isoforms expression induces anti-proliferative and pro-apoptotic activity in mantle cell lymphoma independent of p53 status. Leukemia and Lymphoma, 2016, 57, 2874-2889.	0.6	2
27	Induction of CXCR2 ligands, stem cell-like phenotype, and metastasis in chemotherapy-resistant breast cancer cells. Cancer Letters, 2016, 372, 192-200.	3.2	36
28	CXCR2 signaling regulates <i>KRAS(G12D)</i> -induced autocrine growth of pancreatic cancer. Oncotarget, 2016, 7, 7280-7296.	0.8	39
29	Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget, 2016, 7, 19430-19444.	0.8	78
30	Effect of trivalent arsenicals on cell proliferation in mouse and human microvascular endothelial cells. Toxicology Reports, 2015, 2, 833-837.	1.6	6
31	Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clinical and Experimental Metastasis, 2015, 32, 65-72.	1.7	42
32	Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness. BMC Cancer, 2014, 14, 194.	1.1	65
33	Semaphorin 5A mediated cellular navigation: Connecting nervous system and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 485-493.	3.3	14
34	Diclofenac Induces Apoptosis and Suppresses Diffuse Large B-Cell Lymphoma Proliferation Independent of P53 Status. Blood, 2014, 124, 5485-5485.	0.6	1
35	Animal model for mammary tumor growth in the bone microenvironment. Breast Cancer, 2013, 20, 195-203.	1.3	17
36	The efficacy of nuclease-resistant Chol-siRNA in primary breast tumors following complexation with PLL-PEG(5K). Biomaterials, 2013, 34, 4839-4848.	5.7	21

#	Article	IF	CITATIONS
37	Targeting CXCR2 Enhances Chemotherapeutic Response, Inhibits Mammary Tumor Growth, Angiogenesis, and Lung Metastasis. Molecular Cancer Therapeutics, 2013, 12, 799-808.	1.9	101
38	Modulation of <scp>CXCL</scp> â€8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Medicine, 2012, 1, 306-317.	1.3	49
39	CXCR2-Dependent Endothelial Progenitor Cell Mobilization in Pancreatic Cancer Growth. Translational Oncology, 2011, 4, 20-28.	1.7	35
40	Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Letters, 2011, 300, 180-188.	3.2	108
41	CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvascular Research, 2011, 82, 318-325.	1.1	64
42	A Cross-Species Analysis of a Mouse Model of Breast Cancer-Specific Osteolysis and Human Bone Metastases Using Gene Expression Profiling. BMC Cancer, 2011, 11, 304.	1.1	13
43	Emerging candidates in breast cancer stem cell maintenance, therapy resistance and relapse. Journal of Carcinogenesis, 2011, 10, 36.	2.5	7
44	Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. Journal of Carcinogenesis, 2011, 10, 40.	2.5	49
45	Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunology, Immunotherapy, 2010, 59, 47-62.	2.0	46
46	Tumor-Stromal Interactions in Bone Metastasis. Current Osteoporosis Reports, 2010, 8, 105-113.	1.5	31
47	Small interfering RNAâ€mediated CXCR1 or CXCR2 knockâ€down inhibits melanoma tumor growth and invasion. International Journal of Cancer, 2010, 126, 328-336.	2.3	54
48	High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis. International Journal of Cancer, 2010, 127, 1373-1383.	2.3	58
49	CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncology, 2010, 6, 111-116.	1.1	91
50	Matrix Metalloproteinase (MMP)-13 Regulates Mammary Tumor–Induced Osteolysis by Activating MMP9 and Transforming Growth Factor-β Signaling at the Tumor-Bone Interface. Cancer Research, 2010, 70, 3494-3504.	0.4	111
51	Targeting CXCR1/CXCR2 receptor antagonism in malignant melanoma. Expert Opinion on Therapeutic Targets, 2010, 14, 435-442.	1.5	45
52	Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis. Microvascular Research, 2010, 79, 1-9.	1.1	81
53	Cathepsin G-mediated enhanced TGF-β signaling promotes angiogenesis via upregulation of VEGF and MCP-1. Cancer Letters, 2010, 288, 162-169.	3.2	86

54 Chemokines and Metastasis. , 2010, , 601-631.

#	Article	IF	CITATIONS
55	Host CXCR2-Dependent Regulation of Melanoma Growth, Angiogenesis, and Experimental Lung Metastasis. Cancer Research, 2009, 69, 411-415.	0.4	116
56	Small-Molecule Antagonists for CXCR2 and CXCR1 Inhibit Human Melanoma Growth by Decreasing Tumor Cell Proliferation, Survival, and Angiogenesis. Clinical Cancer Research, 2009, 15, 2380-2386.	3.2	136
57	Activation of the JAK-STAT pathway is necessary for desensitization of 5-HT2A receptor-stimulated phospholipase C signalling by olanzapine, clozapine and MDL 100907. International Journal of Neuropsychopharmacology, 2009, 12, 651.	1.0	21
58	Cathepsin G Recruits Osteoclast Precursors via Proteolytic Activation of Protease-Activated Receptor-1. Cancer Research, 2009, 69, 3188-3195.	0.4	41
59	Cathepsin G–Mediated Activation of Pro–Matrix Metalloproteinase 9 at the Tumor-Bone Interface Promotes Transforming Growth Factor-β Signaling and Bone Destruction. Molecular Cancer Research, 2009, 7, 1224-1233.	1.5	62
60	Enhanced expression and shedding of receptor activator of NF-κB ligand during tumor–bone interaction potentiates mammary tumor-induced osteolysis. Clinical and Experimental Metastasis, 2009, 26, 797-808.	1.7	15
61	Transforming growth factorâ€Î² signaling at the tumor–bone interface promotes mammary tumor growth and osteoclast activation. Cancer Science, 2009, 100, 71-81.	1.7	58
62	Lymphangiogenesis and Anti-Tumor Immune Responses. Current Molecular Medicine, 2009, 9, 694-701.	0.6	7
63	Proteases as modulators of tumor–stromal interaction: Primary tumors to bone metastases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 85-95.	3.3	36
64	Identification of Semaphorin 5A Interacting Protein by Applying Apriori Knowledge and Peptide Complementarity Related to Protein Evolution and Structure. Genomics, Proteomics and Bioinformatics, 2008, 6, 163-174.	3.0	14
65	Cathepsin G Enhances Mammary Tumor–Induced Osteolysis by Generating Soluble Receptor Activator of Nuclear Factor-κB Ligand. Cancer Research, 2008, 68, 5803-5811.	0.4	84
66	The Role of Inflammation in Tumor Progression: Targeting Tumor-Associated Macrophages. Clinical Research and Regulatory Affairs, 2008, 25, 139-155.	2.1	1
67	The evolution of diversity within tumors and metastases. , 2008, , 59-90.		5
68	Murine Models to Evaluate Novel and Conventional Therapeutic Strategies for Cancer. American Journal of Pathology, 2007, 170, 793-804.	1.9	419
69	Immune reconstitution after autologous hematopoietic transplantation with Linâ~', CD34+, Thy-1lo selected or intact stem cell products. International Immunopharmacology, 2007, 7, 1033-1043.	1.7	5
70	Identification of Functional Cell Adhesion Molecules with a Potential Role in Metastasis by a Combination ofin vivoPhage Display andin silicoAnalysis. OMICS A Journal of Integrative Biology, 2007, 11, 41-57.	1.0	39
71	Chemokines in tumor angiogenesis and metastasis. Cancer and Metastasis Reviews, 2007, 26, 453-467.	2.7	162
72	Distinct Expression of CXCL8 and Its Receptors CXCR1 and CXCR2 and Their Association With Vessel Density and Aggressiveness in Malignant Melanoma. American Journal of Clinical Pathology, 2006, 125, 209-216.	0.4	122

#	Article	IF	CITATIONS
73	Distinct Expression of CXCL8 and Its Receptors CXCR1 and CXCR2 and Their Association With Vessel Density and Aggressiveness in Malignant Melanoma. American Journal of Clinical Pathology, 2006, 125, 209-216.	0.4	84
74	Gene expression profiling using a unique murine mammary tumor model reveal role of novel genes regulating tumorâ€stromal interaction in mammary tumorâ€induced osteolysis. FASEB Journal, 2006, 20, A222.	0.2	0
75	Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Research, 2005, 15, 417-425.	0.6	97
76	MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 2005, 7, 485-496.	7.7	349
77	Autocrine Role of Interleukin-8 in Induction of Endothelial Cell Proliferation, Survival, Migration and Angiogenesis. Angiogenesis, 2005, 8, 63-71.	3.7	251
78	Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype. Clinical and Experimental Metastasis, 2005, 21, 571-579.	1.7	77
79	Paracrine Regulation of Vascular Endothelial Growth Factor-A Expression During Macrophage-Melanoma Cell Interaction: Role of Monocyte Chemotactic Protein-1 and Macrophage Colony-Stimulating Factor. Journal of Interferon and Cytokine Research, 2005, 25, 674-683.	0.5	52
80	Down-Regulation of Vascular Endothelial Cell Growth Factor-C Expression Using Small Interfering RNA Vectors in Mammary Tumors Inhibits Tumor Lymphangiogenesis and Spontaneous Metastasis and Enhances Survival. Cancer Research, 2005, 65, 9004-9011.	0.4	133
81	Intratumoral, Injection of Adenoviral Flt3 Ligand Has Therapeutic Activity in Association with Increased Intratumoral Levels of T Cells but Not Dendritic Cells Blood, 2004, 104, 5280-5280.	0.6	0
82	Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clinical and Experimental Metastasis, 2003, 20, 723-731.	1.7	84
83	IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. Journal of Immunology, 2003, 170, 3369-3376.	0.4	1,132
84	Interleukin-8-Induced Proliferation, Survival, and MMP Production in CXCR1 and CXCR2 Expressing Human Umbilical Vein Endothelial Cells. Microvascular Research, 2002, 64, 476-481.	1.1	40
85	Capsaicin regulates vascular endothelial cell growth factor expression by modulation of hypoxia inducing factor-1 $\hat{1}$ ± in human malignant melanoma cells. Journal of Cancer Research and Clinical Oncology, 2002, 128, 461-468.	1.2	31
86	Immune dysfunction despite high levels of immunoregulatory cytokine gene expression in autologous peripheral blood stem cell transplanted non-Hodgkin's lymphoma patients. Experimental Hematology, 2000, 28, 499-507.	0.2	28
87	Growth Factor Mobilization and Modulation of Progenitor Cell Adhesion to Stromal Cells: Role of VLA-4. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 507-515.	1.8	6
88	Expression of Interleukin-10 in Isolated CD8+ T Cells and Monocytes from Growth Factor-Mobilized Peripheral Blood Stem Cell Products: A Mechanism of Immune Dysfunction. Journal of Interferon and Cytokine Research, 1999, 19, 351-360.	0.5	16
89	Interleukin-1β Upregulates MMP-9 Expression in Stromal Cells of Human Giant Cell Tumor of Bone. Journal of Interferon and Cytokine Research, 1999, 19, 1207-1217.	0.5	16
90	Matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Journal of Chemical Sciences, 1999, 111, 239-254.	0.7	2

#	Article	IF	CITATIONS
91	Monocytes from mobilized stem cells inhibit T cell function. Journal of Leukocyte Biology, 1997, 61, 583-591.	1.5	51
92	Influence of the host microenvironment on the clonal selection of human colon carcinoma cells during primary tumor growth and metastasis. Clinical and Experimental Metastasis, 1997, 15, 140-150.	1.7	41
93	Regulation of MMP-9 (92 kDa type IV collagenase/gelatinase B) expression in stromal cells of human giant cell tumor of bone. Clinical and Experimental Metastasis, 1997, 15, 400-409.	1.7	16
94	Suppression of Tumor Growth and Metastasis of Murine Renal Adenocarcinoma by Syngeneic Fibroblasts Genetically Engineered to Secrete the JE/MCP-1 Cytokine. Journal of Interferon and Cytokine Research, 1995, 15, 655-665.	0.5	33
95	Heterogeneity of Cytokine and Growth Factor Gene Expression in Human Melanoma Cells with Different Metastatic Potentials. Journal of Interferon and Cytokine Research, 1995, 15, 81-87.	0.5	21
96	Expression of theJE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunology, Immunotherapy, 1994, 39, 231-238.	2.0	99