
Han-Jung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. International Journal of Molecular Sciences, 2017, 18, 2702.	1.8	262
2	Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials, 2011, 32, 3520-3537.	5.7	145
3	Cellular Internalization of Fluorescent Proteins via Arginine-rich Intracellular Delivery Peptide in Plant Cells. Plant and Cell Physiology, 2005, 46, 482-488.	1.5	122
4	Transdermal delivery of proteins mediated by nonâ€covalently associated arginineâ€rich intracellular delivery peptides. Experimental Dermatology, 2007, 16, 999-1006.	1.4	89
5	Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 291-308.	1.2	83
6	Noncovalent protein transduction in plant cells by macropinocytosis. New Phytologist, 2007, 174, 46-56.	3.5	83
7	Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters, 2007, 581, 1891-1897.	1.3	80
8	Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Peptides, 2012, 37, 273-284.	1.2	70
9	Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells. Biochemical and Biophysical Research Communications, 2006, 346, 758-767.	1.0	67
10	Cellular Internalization of Quantum Dots Noncovalently Conjugated with Arginine-Rich Cell-Penetrating Peptides. Journal of Nanoscience and Nanotechnology, 2010, 10, 6534-6543.	0.9	65
11	An intracellular delivery method for siRNA by an arginine-rich peptide. Journal of Proteomics, 2007, 70, 579-586.	2.4	59
12	Identification of Human TR2 Orphan Receptor Response Element in the Transcriptional Initiation Site of the Simian Virus 40 Major Late Promoter. Journal of Biological Chemistry, 1995, 270, 5434-5440.	1.6	58
13	A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides. Gene, 2012, 493, 201-210.	1.0	55
14	Cell-Penetrating Peptide-Functionized Quantum Dots for Intracellular Delivery. Journal of Nanoscience and Nanotechnology, 2010, 10, 7897-7905.	0.9	53
15	Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene, 2012, 505, 37-45.	1.0	53
16	Suppression of Gene Expression on the Simian Virus 40 Major Late Promoter by Human TR4 Orphan Receptor. Journal of Biological Chemistry, 1995, 270, 30129-30133.	1.6	50
17	Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. PLoS ONE, 2013, 8, e67100.	1.1	50
18	Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges. BioMed Research International, 2015, 2015, 1-16.	0.9	50

Han-Jung Lee

#	Article	IF	CITATIONS
19	Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Peptides, 2009, 30, 1669-1678.	1.2	46
20	Arginine-Rich Intracellular Delivery Peptides Synchronously Deliver Covalently and Noncovalently Linked Proteins into Plant Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 2288-2294.	2.4	46
21	A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials, 2011, 32, 6264-6276.	5.7	42
22	Suppression of the Human Erythropoietin Gene Expression by the TR2 Orphan Receptor, a Member of the Steroid Receptor Superfamily. Journal of Biological Chemistry, 1996, 271, 10405-10412.	1.6	36
23	Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides. Colloids and Surfaces B: Biointerfaces, 2013, 111, 162-170.	2.5	36
24	Cell Membrane Diversity in Noncovalent Protein Transduction. Journal of Membrane Biology, 2008, 222, 1-15.	1.0	34
25	Nona-Arginine Facilitates Delivery of Quantum Dots into Cells via Multiple Pathways. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	34
26	Mechanistic studies of intracellular delivery of proteins by cell-penetrating peptides in cyanobacteria. BMC Microbiology, 2013, 13, 57.	1.3	34
27	Intracellular Delivery of Nanoparticles and DNAs by IR9 Cell-penetrating Peptides. PLoS ONE, 2013, 8, e64205.	1.1	33
28	Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells. PLoS ONE, 2016, 11, e0150439.	1.1	33
29	Delivery of Nucleic Acids, Proteins, and Nanoparticles by Arginine-Rich Cell-Penetrating Peptides in Rotifers. Marine Biotechnology, 2013, 15, 584-595.	1.1	31
30	Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene, 2011, 489, 89-97.	1.0	30
31	Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells. Scientific Reports, 2019, 9, 9398.	1.6	29
32	Cellular Delivery of Noncovalently-Associated Macromolecules by Cell- Penetrating Peptides. Current Pharmaceutical Biotechnology, 2014, 15, 267-275.	0.9	29
33	Dye-free protein molecular weight markers. Electrophoresis, 2005, 26, 3062-3068.	1.3	20
34	Recent advances in understanding thyroid hormone receptor coregulators. Journal of Biomedical Science, 1999, 6, 71-78.	2.6	17
35	TR4 Orphan Receptor Represses the Human Steroid 21-Hydroxylase Gene Expression through the Monomeric AGGTCA Motif. Biochemical and Biophysical Research Communications, 2001, 285, 1361-1368.	1.0	17
36	A Bacterial Indole-3-acetyl-L-aspartic Acid Hydrolase Inhibits Mung Bean (Vigna radiata L.) Seed Germination Through Arginine-rich Intracellular Delivery. Journal of Plant Growth Regulation, 2007, 26, 278-284.	2.8	17

HAN-JUNG LEE

#	Article	IF	CITATIONS
37	A gene delivery method mediated by three arginine-rich cell-penetrating peptides in plant cells. Advanced Studies in Biology, 0, 5, 71-88.	0.2	17
38	Cytotoxicity of NiO and Ni(OH)2 Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 2355.	1.8	16
39	Three Arginine-Rich Cell-Penetrating Peptides Facilitate Cellular Internalization of Red-Emitting Quantum Dots. Journal of Nanoscience and Nanotechnology, 2015, 15, 2067-2078.	0.9	14
40	Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 1731.	1.8	14
41	Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor. Biochemical and Biophysical Research Communications, 2006, 351, 204-208.	1.0	12
42	Cellular Internalization of Quantum Dots Mediated by Cell-Penetrating Peptides. Pharmaceutical Nanotechnology, 2013, 1, 151-161.	0.6	12
43	Comparative Mechanisms of Protein Transduction Mediated by Cell-Penetrating Peptides in Prokaryotes. Journal of Membrane Biology, 2015, 248, 355-368.	1.0	12
44	Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species. Membranes, 2022, 12, 88.	1.4	12
45	Identification of the Human Aldolase A Gene as the First Induced Target for the TR2 Orphan Receptor, a Member of the Steroid Hormone Receptor Superfamily. Biochemical and Biophysical Research Communications, 1997, 235, 205-211.	1.0	11
46	Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A. Biochemical and Biophysical Research Communications, 2006, 350, 430-436.	1.0	10
47	Cell-penetrating peptides for medical theranostics and targeted drug delivery. , 2018, , 359-370.		10
48	Intracellular Delivery of Nanoparticles Mediated by Lactoferricin Cell-Penetrating Peptides in an Endocytic Pathway. Journal of Nanoscience and Nanotechnology, 2019, 19, 613-621.	0.9	10
49	Induction of apoptosis by gene transfer of human TRAIL mediated by arginine-rich intracellular delivery peptides. Anticancer Research, 2010, 30, 2193-202.	0.5	10
50	Gradient polymerase chain reaction performance using regular thermal cycle machine. Analytical Biochemistry, 2005, 340, 174-177.	1.1	8
51	Primary effectors in the mechanisms of transmembrane delivery of arginine-rich cell-penetrating peptides. Advanced Studies in Biology, 0, 5, 11-25.	0.2	8
52	The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System. Current Pharmaceutical Biotechnology, 2017, 18, 569-584.	0.9	8
53	Collective repression of the hepatitis B virus enhancer II by human TR4 and TR2 orphan receptors. Hepatology Research, 2008, 38, 79-84.	1.8	7
54	Laboratory production of 100 base pair DNA molecular weight markers. Journal of Proteomics, 2008, 70, 1199-1202.	2.4	6

HAN-JUNG LEE

#	Article	IF	CITATIONS
55	Cellular Internalization of Quantum Dots. Methods in Molecular Biology, 2013, 991, 249-259.	0.4	5
56	Lactoferricin-Derived L5a Cell-Penetrating Peptide for Delivery of DNA into Cells. Methods in Molecular Biology, 2021, 2211, 113-121.	0.4	3
57	Evolutionary Timeline of Genetic Delivery and Gene Therapy. Current Gene Therapy, 2021, 21, 89-111.	0.9	2
58	Hypotoxic Fluorescent Nanoparticles Delivery by Cell-Penetrating Peptides in Multiple Organisms: From Prokaryotes to Mammalians Cells. , 0, , .		0