
Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302588/publications.pdf Version: 2024-02-01

MORENO

#	Article	IF	CITATIONS
1	Effect of foliar-applied silicon sources on brown rot (Monilinia fructicola). Crop Protection, 2022, 156, 105928.	2.1	3
2	Fertilizer Potential of Organic-Based Soil Amendments on cv. Sangiovese (V. vinifera L.) Vines: Preliminary Results. Agronomy, 2022, 12, 1604.	3.0	2
3	Organic fertilization and crop load in yield and quality of organic nectarines in Italy. Revista Brasileira De Fruticultura, 2021, 43, .	0.5	1
4	Contribution of Cover Crop Residue Decomposition to Peach Tree Nitrogen Nutrition. Journal of Soil Science and Plant Nutrition, 2021, 21, 2124-2136.	3.4	6
5	Effect of Biofertilizers Application on Soil Biodiversity and Litter Degradation in a Commercial Apricot Orchard. Agronomy, 2021, 11, 1116.	3.0	16
6	Annual and residual urea nitrogen contribution to the nutrition of peach trees (Prunus persica L.) grown under subtropical climate. Scientia Horticulturae, 2021, 284, 110099.	3.6	8
7	Root System Morphology of Ipê-Roxo Tree Grown in Soil Subjected to Phosphorus Application in Subtropical Climate Region. Agronomy, 2021, 11, 1563.	3.0	3
8	Soil Response to Agricultural Land Abandonment: A Case Study of a Vineyard in Northern Italy. Agronomy, 2021, 11, 1841.	3.0	7
9	Organic Fertilization of Fruit Trees as an Alternative to Mineral Fertilizers: Effect on Plant Growth, Yield and Fruit Quality. Plant in Challenging Environments, 2021, , 129-150.	0.4	2
10	Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective. Sustainability, 2020, 12, 9793.	3.2	16
11	Nutrient management in fruit crops: An organic way. , 2020, , 379-392.		1
12	Changes in leaf nutrient content and quality of pear fruits by biofertilizer application in northeastern Italy. Revista Brasileira De Fruticultura, 2020, 42, .	0.5	5
13	Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Scientia Horticulturae, 2019, 257, 108710.	3.6	19
14	Nitrogen fertilization affects yield and fruit quality in pear. Scientia Horticulturae, 2019, 258, 108782.	3.6	32
15	Potential of vermicompost and limestone in reducing copper toxicity in young grapevines grown in Cu-contaminated vineyard soil. Chemosphere, 2019, 226, 421-430.	8.2	24
16	Soil CO 2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Applied Soil Ecology, 2017, 112, 79-89.	4.3	21
17	Effect of time of application on nitrogen uptake, partitioning, and remobilization in walnut trees. Journal of Plant Nutrition, 2017, 40, 719-725.	1.9	8
18	Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems and Environment, 2016, 226, 56-64.	5.3	53

Moreno

#	Article	IF	CITATIONS
19	Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutrient Cycling in Agroecosystems, 2016, 104, 247-258.	2.2	22
20	Biochar physico-chemical properties as affected by environmental exposure. Science of the Total Environment, 2016, 563-564, 237-246.	8.0	110
21	Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 2016, 272, 10-19.	5.1	29
22	THE ROLE OF MINERAL NUTRITION ON YIELDS AND FRUIT QUALITY IN GRAPEVINE, PEAR AND APPLE. Revista Brasileira De Fruticultura, 2015, 37, 1089-1104.	0.5	94
23	Response of Hybrid Peach × Almond Trees to Increasing Rate of Soil-Applied Urea and Compost Nitrogen. Compost Science and Utilization, 2015, 23, 18-29.	1.2	2
24	Effect of organic fertilization on nutrient concentration and accumulation in nectarine (Prunus) Tj ETQq0 0 0 rgBT 174-179.	/Overlock 3.6	2 10 Tf 50 54 21
25	Determination of the Major Phenolic Compounds in Pomegranate Juices by HPLC–DAD–ESI-MS. Journal of Agricultural and Food Chemistry, 2013, 61, 5328-5337.	5.2	134
26	Counteraction of oxidative damage by pomegranate juice: influence of the cultivar. Journal of the Science of Food and Agriculture, 2013, 93, 3565-3573.	3.5	22
27	Use of compost to manage Fe nutrition of pear trees grown in calcareous soil. Scientia Horticulturae, 2012, 136, 87-94.	3.6	32
28	Effect of organic fertilization on carbon assimilation and partitioning in bearing nectarine trees. Scientia Horticulturae, 2012, 137, 100-106.	3.6	25
29	Evaluation of Nitrate-Nitrogen Leaching From Lysimeter-Grown Bearing Apple Trees. Soil Science, 2011, 176, 280-287.	0.9	7
30	Effectiveness ofAmaranthus retroflexusL. aqueous extract in preventing iron chlorosis of pear trees (Pyrus communisL.). Soil Science and Plant Nutrition, 2011, 57, 813-822.	1.9	4
31	NUTRIENT PARTITIONING IN POTTED PEACH (<i>PRUNUS PERSICA</i> L.) TREES SUPPLIED WITH MINERAL AND ORGANIC FERTILIZERS. Journal of Plant Nutrition, 2010, 33, 2050-2061.	1.9	19
32	Evaluation of the effectiveness of soil-applied plant derivatives of Meliaceae species on nitrogen availability to peach trees. Scientia Horticulturae, 2010, 124, 183-188.	3.6	14
33	Response of Potted Pear Trees to Increasing Copper Concentration in Sandy and Clay-Loam Soils. Journal of Plant Nutrition, 2008, 31, 2089-2104.	1.9	13
34	Prevention of Ironâ€Đeficiency Induced Chlorosis in Kiwifruit (Actinidia deliciosa) Through Soil Application of Synthetic Vivianite in a Calcareous Soil. Journal of Plant Nutrition, 2003, 26, 2031-2041.	1.9	31
35	Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. European Journal of Agronomy, 2000, 13, 279-286.	4.1	32
36	Organic fertilization affects carbon assimilation and partitioning of nonbearing potted strawberry plants. Journal of Plant Nutrition, 0, , 1-11.	1.9	0

#	Article	IF	CITATIONS
37	Evaluation of plant derivatives of Meliaceae family as a source of nitrogen for trees. Journal of Plant Nutrition, 0, , 1-12.	1.9	0