
## Michele Marcolongo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025670/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials, 2006, 27, 176-184.                                                                                                       | 11.4 | 163       |
| 2  | Degradation of mechanical properties of UHMWPE acetabular liners following long-term implantation. Journal of Arthroplasty, 2003, 18, 68-78.                                                                       | 3.1  | 140       |
| 3  | Novel associated hydrogels for nucleus pulposus replacement. Journal of Biomedical Materials<br>Research - Part A, 2003, 67A, 1329-1337.                                                                           | 4.0  | 134       |
| 4  | Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular<br>cartilage replacement. Journal of Biomedical Materials Research - Part A, 2007, 83A, 471-479.                 | 4.0  | 90        |
| 5  | Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK<br>lumbar spinal cages?. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103455.             | 3.1  | 78        |
| 6  | Bioactive glass fiber/polymeric composites bond to bone tissue. , 1998, 39, 161-170.                                                                                                                               |      | 76        |
| 7  | Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication. Journal of Materials Research, 2018, 33, 2040-2051.                                    | 2.6  | 72        |
| 8  | Synthesis and Characterization of an Injectable Hydrogel with Tunable Mechanical Properties for Soft Tissue Repair. Biomacromolecules, 2006, 7, 3223-3228.                                                         | 5.4  | 60        |
| 9  | The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics.<br>Journal of Biomechanics, 2008, 41, 2104-2111.                                                                      | 2.1  | 55        |
| 10 | The effect of dehydration history on PVA/PVP hydrogels for nucleus pulposus replacement. Journal of<br>Biomedical Materials Research Part B, 2004, 69B, 135-140.                                                   | 3.1  | 51        |
| 11 | Surface reaction layer formationin vitro on a bioactive glass fiber/polymeric composite. , 1997, 37, 440-448.                                                                                                      |      | 47        |
| 12 | Synthesis and recovery characteristics of branched and grafted PNIPAAm–PEG hydrogels for the<br>development of an injectable load-bearing nucleus pulposus replacement. Acta Biomaterialia, 2010, 6,<br>1319-1328. | 8.3  | 43        |
| 13 | Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: A finite<br>element study. Journal of Orthopaedic Research, 2012, 30, 122-128.                                        | 2.3  | 40        |
| 14 | Effect of coupling agents on the local mechanical properties of bioactive dental composites by the nano-indentation technique. Dental Materials, 2005, 21, 656-664.                                                | 3.5  | 36        |
| 15 | Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. Journal of<br>Biomedical Materials Research - Part A, 2017, 105, 1786-1798.                                                     | 4.0  | 33        |
| 16 | Role of biomolecules on annulus fibrosus micromechanics: Effect of enzymatic digestion on elastic<br>and failure properties. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 75-84.          | 3.1  | 31        |
| 17 | Nucleus Implant Parameters Significantly Change the Compressive Stiffness of the Human Lumbar<br>Intervertebral Disc. Journal of Biomechanical Engineering, 2005, 127, 536-540.                                    | 1.3  | 29        |
| 18 | The effect of protein-free versus protein-containing medium on the mechanical properties and uptake of ions of PVA/PVP hydrogels. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 489-503.             | 3.5  | 29        |

MICHELE MARCOLONGO

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Terminal-end functionalization of chondroitin sulfate for the synthesis of biomimetic proteoglycans.<br>Carbohydrate Polymers, 2012, 90, 431-440.                                                                                        | 10.2 | 27        |
| 20 | New materials for hip and knee joint replacement: What's hip and what's in kneed?. Journal of<br>Orthopaedic Research, 2020, 38, 1436-1444.                                                                                              | 2.3  | 25        |
| 21 | Aggrecan-like biomimetic proteoglycans (BPGs) composed of natural chondroitin sulfate bristles<br>grafted onto a poly(acrylic acid) core for molecular engineering of the extracellular matrix. Acta<br>Biomaterialia, 2018, 75, 93-104. | 8.3  | 24        |
| 22 | The effect of nucleus implant parameters on the compressive mechanics of the lumbar intervertebral<br>disc: A finite element study. Journal of Biomedical Materials Research - Part B Applied Biomaterials,<br>2009, 90B, 596-607.       | 3.4  | 19        |
| 23 | Fill of the Nucleus Cavity Affects Mechanical Stability in Compression, Bending, and Torsion of a Spine<br>Segment, Which Has Undergone Nucleus Replacement. Spine, 2010, 35, 1128-1135.                                                 | 2.0  | 18        |
| 24 | Nucleus Implantation: The Biomechanics of Augmentation Versus Replacement With Varying Degrees of Nucleotomy. Journal of Biomechanical Engineering, 2014, 136, 051001.                                                                   | 1.3  | 17        |
| 25 | <i>In situ</i> apatite forming injectable hydrogel. Journal of Biomedical Materials Research - Part A, 2007, 83A, 249-256.                                                                                                               | 4.0  | 16        |
| 26 | Electrospun poly(εâ€caprolactone) nanofiber shish kebabs mimic mineralized bony surface features.<br>Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1141-1149.                                       | 3.4  | 15        |
| 27 | A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone<br>Scaffolds. Regenerative Engineering and Translational Medicine, 2018, 4, 107-119.                                                        | 2.9  | 13        |
| 28 | The regulatory effects of proteoglycans on collagen fibrillogenesis and morphology investigated using biomimetic proteoglycans. Journal of Structural Biology, 2019, 206, 204-215.                                                       | 2.8  | 13        |
| 29 | Synthesis of macromolecular mimics of small leucine-rich proteoglycans with a poly(ethylene glycol) core and chondroitin sulphate bristles. Carbohydrate Polymers, 2017, 166, 338-347.                                                   | 10.2 | 10        |
| 30 | Biomimetic proteoglycans diffuse throughout articular cartilage and localize within the pericellular matrix. Journal of Biomedical Materials Research - Part A, 2019, 107, 1977-1987.                                                    | 4.0  | 10        |
| 31 | Biomimetic Mineralization of Hierarchical Nanofiber Shish-Kebabs in a Concentrated Apatite-Forming Solution. ACS Applied Bio Materials, 2021, 4, 571-580.                                                                                | 4.6  | 9         |
| 32 | Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs.<br>Polymer, 2020, 202, 122644.                                                                                                           | 3.8  | 8         |
| 33 | The Science Behind Wear Testing for Great Toe Implants for Hallux Rigidus. Foot and Ankle Clinics, 2016, 21, 891-902.                                                                                                                    | 1.3  | 6         |
| 34 | A Cross University-Led COVID-19 Rapid-Response Effort: Design, Build, and Distribute Drexel AJFlex Face<br>Shields. Annals of Biomedical Engineering, 2021, 49, 950-958.                                                                 | 2.5  | 6         |
| 35 | Painful temporomandibular joint overloading induces structural remodeling in the pericellular matrix of that joint's chondrocytes. Journal of Orthopaedic Research, 2022, 40, 348-358.                                                   | 2.3  | 5         |
| 36 | Advances in Biomaterials for the Treatment of Intervertebral Disc Degeneration. Journal of Long-Term<br>Effects of Medical Implants, 2012, 22, 73-84.                                                                                    | 0.7  | 4         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue. Journal of<br>Magnetic Resonance, 2015, 258, 6-11.                                | 2.1 | 4         |
| 38 | Flame time of a cigarette lighter to achieve temperature capable of inflicting a burn. Burns, 2017, 43, 1227-1232.                                                       | 1.9 | 3         |
| 39 | MC3T3 E1 cell response to mineralized nanofiber shish kebab structures. Journal of Biomedical<br>Materials Research - Part B Applied Biomaterials, 2021, 109, 1601-1610. | 3.4 | 2         |
| 40 | The Science Behind Surgical Innovations of the Forefoot. Foot and Ankle Clinics, 2016, 21, 903-908.                                                                      | 1.3 | 1         |
| 41 | Injection of a Novel Biomimetic Aggrecan for the Restoration of Intervertebral Disc Tissue Mechanics. , 2013, , .                                                        |     | 0         |
| 42 | Advances in Biomaterials for Clinical Orthopaedic Applications. , 2012, , 561-582.                                                                                       |     | 0         |