Xiaohong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025304/publications.pdf

Version: 2024-02-01

304743 477307 29 1,629 22 29 h-index citations g-index papers 29 29 29 1765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere, 2018, 206, 587-596.	8.2	269
2	Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. Journal of Hazardous Materials, 2019, 369, 50-61.	12.4	174
3	Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2+ and MB. Journal of Hazardous Materials, 2022, 423, 127191.	12.4	96
4	Preparation of Hierarchical Spinel NiCo ₂ O ₄ Nanowires for High-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2018, 57, 2517-2525.	3.7	87
5	<i>In situ</i> growth of ZIF-8-derived ternary ZnO/ZnCo ₂ O ₄ /NiO for high performance asymmetric supercapacitors. Nanoscale, 2019, 11, 10114-10128.	5 . 6	76
6	Construction of a Lignosulfonate–Lysine Hydrogel for the Adsorption of Heavy Metal Ions. Journal of Agricultural and Food Chemistry, 2020, 68, 3050-3060.	5.2	73
7	Fluffy Cotton-Like GO/Zn–Co–Ni Layered Double Hydroxides Form from a Sacrificed Template GO/ZIF-8 for High Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 11618-11629.	6.7	71
8	Ultrasonic-assisted synthesis of aminated lignin by a Mannich reaction and its decolorizing properties for anionic azo-dyes. RSC Advances, 2014, 4, 28156.	3.6	67
9	Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2+. Ultrasonics Sonochemistry, 2018, 40, 221-229.	8.2	66
10	Preparation and Characterization of Fe ₂ O ₃ Nanoparticles by Solid-Phase Method and Its Hydrogen Peroxide Sensing Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 1069-1077.	6.7	64
11	Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted poly(acrylic acid-co-poly(vinyl) Tj $ETQq1\ 1\ 0.7843$	14 _{3.} gBT /O)verlock 10 Tf
12	Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere, 2021, 279, 130504.	8.2	54
13	Composite material CCO/Co-Ni-Mn LDH made from sacrifice template CCO/ ZIF-67 for high-performance supercapacitor. Applied Surface Science, 2022, 572, 151373.	6.1	53
14	Ultrasonic Method to Synthesize Glucan- $\langle i \rangle g \langle i \rangle$ -poly(acrylic acid)/Sodium Lignosulfonate Hydrogels and Studies of Their Adsorption of Cu $\langle sup \rangle 2+\langle sup \rangle$ from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2017, 5, 6438-6446.	6.7	52
15	Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu2+ and Co2+. International Journal of Biological Macromolecules, 2021, 175, 459-472.	7.5	51
16	Facile construction of a MgCo ₂ O ₄ @NiMoO ₄ /NF core–shell nanocomposite for high-performance asymmetric supercapacitors. Journal of Materials Chemistry C, 2019, 7, 13267-13278.	5 . 5	49
17	A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II). Mikrochimica Acta, 2016, 183 , $1823-1830$.	5.0	40

ultrasonic synthesis and properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate—grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of a sodium lignosulfonate–grafted poly(acrylic acid-co-acryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 light of the solid properties of th

#	Article	IF	CITATIONS
19	Polyacrylic acid/carboxymethyl cellulose/activated carbon composite hydrogel for removal of heavy metal ion and cationic dye. Cellulose, 2022, 29, 483-501.	4.9	35
20	Reasonable design and synthesis of nickel manganese sulfide nanoparticles derived from metal organic frameworks as electrode materials for supercapacitors. Journal of Power Sources, 2022, 539, 231594.	7.8	30
21	The preparation of Fe ₂ O ₃ nanoparticles by liquid phase-based ultrasonic-assisted method and its application as enzyme-free sensor for the detection of H ₂ O ₂ . RSC Advances, 2015, 5, 21161-21169.	3.6	27
22	Facile fabrication of CoNi-Layered Double Hydroxide /NiCo2S4/Reduced Graphene Oxide composites by in situ hydrothermal growth strategy for supercapacitor performance. Ceramics International, 2022, 48, 17644-17653.	4.8	27
23	Ternary Ni(OH)2/Co(OH)2/Mg(OH)2 derived from MOF-74 as a positive material for the determination of high performance supercapacitor. Electrochimica Acta, 2022, 412, 140135.	5.2	20
24	Lignin-assisted solid-phase synthesis of nano-CuO for a photocatalyst with excellent catalytic activity and high performance supercapacitor electrodes. RSC Advances, 2016, 6, 65644-65653.	3.6	15
25	Structural characterization and photocatalytic properties of ZnO by solid-state synthesis using aminated lignin template. Journal of Materials Science: Materials in Electronics, 2015, 26, 6704-6711.	2.2	10
26	Hydrothermal synthesis of sphere-like BiOCl using sodium lignosulphonate as surfactant and its application in visible light photocatalytic degradation of rodamine B. Journal of Materials Science: Materials in Electronics, 2017, 28, 3119-3127.	2.2	10
27	Effect of solvent binding on UV-vis spectra and redox potentials of octaethylporphyrins containing first-row transition metal ions. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1233-1242.	0.8	9
28	Convenient synthesis of Ni-Mn-S@rGO composite with enhanced performance for advanced energy storage applications. Ceramics International, 2022, 48, 9558-9568.	4.8	6
29	Hydrothermal synthesis of flower cluster-shaped ZnO microstructures with sodium lignosulfonate as structure-directing agent. Journal of Materials Science: Materials in Electronics, 2015, 26, 9171-9177.	2.2	4