Yuen Hong Tsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe ₂ /Germanium Heterojunction. ACS Nano, 2019, 13, 9907-9917.	14.6	420
2	Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction. Advanced Functional Materials, 2018, 28, 1705970.	14.9	314
3	Multilayered PdSe ₂ /Perovskite Schottky Junction for Fast, Selfâ€Powered, Polarization‣ensitive, Broadband Photodetectors, and Image Sensor Application. Advanced Science, 2019, 6, 1901134.	11.2	308
4	Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. Journal of Materials Chemistry A, 2014, 2, 9142-9149.	10.3	299
5	Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Advanced Functional Materials, 2019, 29, 1806878.	14.9	286
6	High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Scientific Reports, 2016, 6, 20343.	3.3	230
7	Van der Waals Epitaxial Growth of Mosaicâ€Like 2D Platinum Ditelluride Layers for Roomâ€Temperature Midâ€Infrared Photodetection up to 10.6 µm. Advanced Materials, 2020, 32, e2004412.	21.0	202
8	In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Research, 2019, 12, 183-189.	10.4	189
9	Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Materials, 2018, 10, 352-362.	7.9	187
10	Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Scientific Reports, 2016, 5, 18596.	3.3	163
11	Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe ₂ /Perovskite Heterojunctions. Journal of Physical Chemistry Letters, 2018, 9, 1185-1194.	4.6	159
12	Two-dimensional nanomaterials for photocatalytic CO ₂ reduction to solar fuels. Sustainable Energy and Fuels, 2017, 1, 1875-1898.	4.9	156
13	Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Research, 2021, 14, 1973-1979.	10.4	152
14	Design of 2D Layered PtSe ₂ Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector. ACS Photonics, 2018, 5, 3820-3827.	6.6	144
15	Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Solar Energy Materials and Solar Cells, 2017, 160, 43-53.	6.2	141
16	Multifunctional Sensor Based on Porous Carbon Derived from Metal–Organic Frameworks for Real Time Health Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 3986-3993.	8.0	134
17	Tellurite glass lasers operating close to 2 <i>î¼</i> m. Laser Physics Letters, 2010, 7, 177-193.	1.4	125
18	Efficient ~2 μm Tm^3+-doped tellurite fiber laser. Optics Letters, 2008, 33, 402.	3.3	123

#	Article	IF	CITATIONS
19	Recycled waste black polyurethane sponges for solar vapor generation and distillation. Applied Energy, 2017, 206, 63-69.	10.1	119
20	Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie - International Edition, 2016, 55, 12356-12360.	13.8	118
21	Perovskite/Silicon Tandem Solar Cells: From Detailed Balance Limit Calculations to Photon Management. Nano-Micro Letters, 2019, 11, 58.	27.0	115
22	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy, 2017, 42, 26-33.	16.0	109
23	Infrared emission and energy transfer in Tm^3+, Tm^3+-Ho^3+ and Tm^3+-Yb^3+-doped tellurite fibre. Optics Express, 2007, 15, 6546.	3.4	98
24	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	5.6	98
25	Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO 2 hybrids. Applied Surface Science, 2016, 382, 225-238.	6.1	93
26	Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2019, 196, 36-42.	6.2	88
27	Efficient 2.96 Âμm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 Âμm. Optics Express, 2006, 14, 678.	3.4	84
28	Superbroadband near-IR photoluminescence from Pr^3+-doped fluorotellurite glasses. Optics Express, 2012, 20, 3803.	3.4	81
29	Bifunctional Au@Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale, 2014, 6, 9063-9070.	5.6	81
30	Photocatalytic and electrochemical performance of three-Dimensional reduced graphene Oxide/WS2/Mg-doped ZnO composites. Applied Surface Science, 2017, 400, 129-138.	6.1	79
31	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	10.0	75
32	A Yb^3+/Tm^3+/Ho^3+ triply-doped tellurite fibre laser. Optics Express, 2008, 16, 10690.	3.4	73
33	Enhanced SERS Stability of R6G Molecules with Monolayer Graphene. Journal of Physical Chemistry C, 2014, 118, 11827-11832.	3.1	72
34	Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results in Physics, 2017, 7, 4287-4293.	4.1	69
35	Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 2021, 79, 105400.	16.0	69
36	Active site engineering of Fe- and Ni-sites for highly efficient electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 21445-21451.	10.3	68

#	Article	IF	CITATIONS
37	Valence Engineering <i>via</i> Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano, 2019, 13, 11469-11476.	14.6	68
38	Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Solar Energy Materials and Solar Cells, 2018, 182, 272-280.	6.2	67
39	Tm^3+/Ho^3+ codoped tellurite fiber laser. Optics Letters, 2008, 33, 1282.	3.3	65
40	Graphene Oxide Absorbers for Watt-Level High-Power Passive Mode-Locked Nd:GdVO\$_{4}\$ Laser Operating at 1 \$mu\$m. Journal of Lightwave Technology, 2012, 30, 3259-3262.	4.6	64
41	High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Optics Letters, 2017, 42, 3335.	3.3	64
42	High power 1.9 μm Tm3+-silica fibre laser pumped at 1.09 μm by a Yb3+-silica fibre laser. Optics Communications, 2004, 231, 357-364.	2.1	63
43	Core–shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles. Journal of Materials Chemistry C, 2013, 1, 4313.	5.5	60
44	Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. Journal of Materials Chemistry C, 2015, 3, 6532-6538.	5.5	59
45	Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals. Optics Letters, 2016, 41, 1644.	3.3	59
46	Tuning nonlinear optical absorption properties of WS ₂ nanosheets. Nanoscale, 2015, 7, 17771-17777.	5.6	57
47	Vertically standing PtSe ₂ film: a saturable absorber for a passively mode-locked Nd:LuVO ₄ laser. Photonics Research, 2018, 6, 750.	7.0	56
48	Mass Transport Mechanism of Cu Species at the Metal/Dielectric Interfaces with a Graphene Barrier. ACS Nano, 2014, 8, 12601-12611.	14.6	55
49	Ultrasmall 2D NbSe ₂ based quantum dots used for low threshold ultrafast lasers. Journal of Materials Chemistry C, 2018, 6, 12638-12642.	5.5	55
50	Nanophotonic design of perovskite/silicon tandem solar cells. Journal of Materials Chemistry A, 2018, 6, 3625-3633.	10.3	53
51	High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2  î¼m dual-wavelength intracavity KTP optical parametric oscillator. Photonics Research, 2017, 5, 82.	7.0	52
52	Fabrication of Covalently Functionalized Graphene Oxide Incorporated Solid-State Hybrid Silica Gel Glasses and Their Improved Nonlinear Optical Response. Journal of Physical Chemistry C, 2013, 117, 23108-23116.	3.1	51
53	Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells. Nano-Micro Letters, 2021, 13, 36.	27.0	50
54	In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays. Applied Surface Science, 2014, 301, 351-357.	6.1	49

#	Article	IF	CITATIONS
55	Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS ₂) saturable absorber. Photonics Research, 2020, 8, 511.	7.0	48
56	Enhanced light emission near 2.7μm from Er–Nd co-doped germanate glass. Optical Materials, 2013, 35, 1247-1250.	3.6	46
57	Optical limiting properties of a few-layer MoS ₂ /PMMA composite under excitation of ultrafast laser pulses. Journal of Materials Chemistry C, 2019, 7, 495-502.	5.5	46
58	High-temperature solar steam generation by MWCNT-HfTe2 van der Waals heterostructure for low-cost sterilization. Nano Energy, 2022, 94, 106916.	16.0	46
59	All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser. Journal of Lightwave Technology, 2012, 30, 2502-2507.	4.6	45
60	Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes. Vacuum, 2015, 116, 48-53.	3.5	45
61	An Ytterbium-doped fiber laser with dark and Q-switched pulse generation using graphene-oxide as saturable absorber. Optics Communications, 2014, 312, 227-232.	2.1	44
62	Laser Q-switching with PtS ₂ microflakes saturable absorber. Optics Express, 2018, 26, 13055.	3.4	41
63	Ultrafast Laser Pulses Generation by Using 2D Layered PtS ₂ as a Saturable Absorber. Journal of Lightwave Technology, 2019, 37, 1174-1179.	4.6	41
64	MnOx quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method. Applied Catalysis B: Environmental, 2015, 176-177, 500-512.	20.2	40
65	Ultrafast laser pulse (115 fs) generation by using direct bandgap ultrasmall 2D GaTe quantum dots. Journal of Materials Chemistry C, 2019, 7, 5937-5944.	5.5	40
66	Fabrication of MAPbBr ₃ Single Crystal pâ€n Photodiode and nâ€pâ€n Phototriode for Sensitive Light Detection Application. Advanced Functional Materials, 2020, 30, 2001033.	14.9	40
67	Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector. Optics Express, 2015, 23, 4839.	3.4	39
68	Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells. Applied Nanoscience (Switzerland), 2017, 7, 489-497.	3.1	39
69	Waste Egg Tray and Toner-Derived Highly Efficient 3D Solar Evaporator for Freshwater Generation. ACS Applied Materials & Interfaces, 2022, 14, 7936-7948.	8.0	39
70	Approaching Perfect Light Incoupling in Perovskite and Silicon Thin Film Solar Cells by Moth Eye Surface Textures. Advanced Theory and Simulations, 2018, 1, 1800030.	2.8	38
71	104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser. Optics Express, 2007, 15, 3991.	3.4	37
72	Electrical and Optical Properties of Nickelâ€Oxide Films for Efficient Perovskite Solar Cells. Small Methods, 2020, 4, 2000454.	8.6	37

#	Article	IF	CITATIONS
73	Natural Porous Materials for Interfacial Solar Steam Generation toward Clean Water Production. Solar Rrl, 2022, 6, .	5.8	37
74	Near- and mid-infrared photoluminescence in Ho3+ doped and Ho3+–Yb3+ codoped low-phonon-energy germanotellurite glasses. Journal of Luminescence, 2013, 137, 132-137.	3.1	36
75	Enhanced ~2μ4m and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics. Journal of Non-Crystalline Solids, 2013, 361, 13-16.	3.1	36
76	The WS ₂ quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate. Nanotechnology, 2016, 27, 414005.	2.6	36
77	Solar Driven Interfacial Steam Generation Derived from Biodegradable Luffa Sponge. Advanced Sustainable Systems, 2021, 5, 2000291.	5.3	35
78	Superbroadband near-infrared emission and energy transfer in Pr^3+-Er^3+ codoped fluorotellurite glasses. Optics Express, 2012, 20, 12205.	3.4	34
79	Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass. Journal of Non-Crystalline Solids, 2012, 358, 1644-1648.	3.1	34
80	Compact broadband amplified spontaneous emission in Tm^3+-doped tungsten tellurite glass double-cladding single-mode fiber. Optical Materials Express, 2013, 3, 723.	3.0	34
81	Efficient 2.7 micron emission from Er3+/Pr3+ codoped oxyfluorotellurite glass. Journal of Non-Crystalline Solids, 2012, 358, 3403-3406.	3.1	33
82	Passively Q-Switched Nd:YVO4 Laser Using WS2 Saturable Absorber Fabricated by Radio Frequency Magnetron Sputtering Deposition. Journal of Lightwave Technology, 2017, 35, 4120-4124.	4.6	33
83	Efficient lasing at near 3µm by a Dy-doped ZBLAN fiber laser pumped at â^¼1.1 µm by an Yb fiber laser. Laser Physics Letters, 2011, 8, 818-822.	1.4	32
84	A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectronic Engineering, 2011, 88, 2797-2799.	2.4	32
85	An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses. Laser Physics, 2013, 23, 075105.	1.2	32
86	Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. Journal of Materials Chemistry C, 2018, 6, 7501-7511.	5.5	32
87	Passively Q-switched Ytterbium-doped fiber laser based on broadband multilayer Platinum Ditelluride (PtTe2) saturable absorber. Scientific Reports, 2019, 9, 10106.	3.3	32
88	Optics of Perovskite Solar Cell Front Contacts. ACS Applied Materials & Interfaces, 2019, 11, 14693-14701.	8.0	32
89	Enhanced Photocatalytic Activity of WS2 Film by Laser Drilling to Produce Porous WS2/WO3 Heterostructure. Scientific Reports, 2017, 7, 3125.	3.3	31
90	Influence of Perovskite Interface Morphology on the Photon Management in Perovskite/Silicon Tandem Solar Cells, ACS Applied Materials & amp: Interfaces, 2020, 12, 15080-15086	8.0	30

#	Article	IF	CITATIONS
91	Fabrication of 2D PdSe ₂ /3D CdTe Mixed-Dimensional van der Waals Heterojunction for Broadband Infrared Detection. ACS Applied Materials & Interfaces, 2021, 13, 41791-41801.	8.0	30
92	Tin Telluride Quantum Dots as a Novel Saturable Absorber for Q‣witching and Mode Locking in Fiber Lasers. Advanced Optical Materials, 2021, 9, 2001821.	7.3	30
93	Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 716.	2.1	29
94	Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6, 101974-101980.	3.6	29
95	Perovskite Color Detectors: Approaching the Efficiency Limit. ACS Applied Materials & Interfaces, 2020, 12, 47831-47839.	8.0	29
96	Vertically Stacked Perovskite Detectors for Color Sensing and Color Vision. Advanced Materials Interfaces, 2020, 7, 2000459.	3.7	28
97	On the interplay of cell thickness and optimum period of silicon thinâ€film solar cells: light trapping and plasmonic losses. Progress in Photovoltaics: Research and Applications, 2016, 24, 379-388.	8.1	27
98	Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials, 2020, 10, 2441.	4.1	26
99	Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy, 2021, 89, 106388.	16.0	25
100	Two-Dimensional Gallium Sulfide as a Novel Saturable Absorber for Broadband Ultrafast Photonics Applications. ACS Applied Materials & Interfaces, 2021, 13, 61518-61527.	8.0	25
101	Broadband amplified spontaneous emission fibre source near 2 μm using resonant in-band pumping. Journal of Modern Optics, 2005, 52, 109-118.	1.3	24
102	Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation. Chinese Physics Letters, 2012, 29, 114206.	3.3	24
103	Synthesis of reduced graphene oxide/î±-Bi2Mo3O12 @ β-Bi2O3 heterojunctions by organic electrolytes assisted UV-excited method. Chemical Engineering Journal, 2014, 257, 309-316.	12.7	24
104	Utilization of group 10 2D TMDs-PdSe ₂ as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology, 2021, 32, 055201.	2.6	24
105	Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser. Optics Communications, 2006, 259, 236-241.	2.1	23
106	3W high-power laser passively mode-locked by graphene oxide saturable absorber. Optics Communications, 2013, 298-299, 168-170.	2.1	23
107	Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Solar Energy, 2020, 198, 570-577.	6.1	23
108	Improved Nanophotonic Front Contact Design for Highâ€Performance Perovskite Singleâ€Junction and Perovskite/Perovskite Tandem Solar Cells. Solar Rrl, 2021, 5, 2100509.	5.8	23

#	Article	IF	CITATIONS
109	Enhanced photocatalytic properties of graphene oxide/ZnO nanohybrid by Mg dopants. Physica Scripta, 2015, 90, 025806.	2.5	22
110	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	12.7	22
111	Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm. Journal of Modern Optics, 2006, 53, 991-1001.	1.3	21
112	Record performance from a Q-switched Er3+:Yb3+:YVO4 laser. Applied Physics B: Lasers and Optics, 2009, 96, 11-17.	2.2	21
113	Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler. Optics Communications, 2013, 289, 119-122.	2.1	21
114	Highly efficient photocatalytic performance of graphene oxide/TiO2–Bi2O3 hybrid coating for organic dyes and NO gas. Journal of Materials Science: Materials in Electronics, 2015, 26, 3385-3391.	2.2	21
115	Spectroscopic and lasing studies of Ce3+:Er3+:Yb3+:YVO4 crystals. Laser Physics Letters, 2011, 8, 729-735.	1.4	19
116	Sub-100ns solid-state laser Q-switched with double wall carbon nanotubes. Optics Communications, 2013, 306, 128-130.	2.1	19
117	Yb-doped passively mode-locked fiber laser based on a single wall carbon nanotubes wallpaper absorber. Optics and Laser Technology, 2013, 47, 144-147.	4.6	19
118	In ₂ Se ₃ nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking. Nanotechnology, 2019, 30, 465704.	2.6	19
119	Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications. Journal of Materials Science, 2018, 53, 573-580.	3.7	18
120	Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Research, 2020, 13, 2939-2949.	10.4	18
121	Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells. RSC Advances, 2020, 10, 14856-14866.	3.6	18
122	Holmium, praseodymium-doped fluoride fiber laser operating near 2.87 /spl mu/m and pumped with a Nd:YAG laser. Journal of Lightwave Technology, 2005, 23, 4315-4320.	4.6	17
123	Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell. Nanoscale Research Letters, 2014, 9, 362.	5.7	17
124	Effect of laser illumination on the morphology and optical property of few-layer MoS ₂ nanosheet in NMP and PMMA. Journal of Materials Chemistry C, 2016, 4, 678-683.	5.5	17
125	Efficient high power Yb3+-silica fibre laser cladding-pumped at 1064 nm. Optics Communications, 2003, 215, 381-387.	2.1	16
126	Multi-walled carbon nanotube as a saturable absorber for a passively mode-locked Nd:YVO4laser. Laser Physics Letters, 2013, 10, 055805.	1.4	16

#	Article	IF	CITATIONS
127	High photoelectrochemical activity and stability of Au-WS2/silicon heterojunction photocathode. Solar Energy Materials and Solar Cells, 2018, 174, 300-306.	6.2	16
128	Constructing Interfacial Energy Transfer for Photon Up―and Down onversion from Lanthanides in a Core–Shell Nanostructure. Angewandte Chemie, 2016, 128, 12544-12548.	2.0	15
129	â^1⁄42 ι⁄4m Tm3+/Yb3+-doped tellurite fibre laser. Journal of Materials Science: Materials in Electronics, 2009, 20, 317-320.	2.2	14
130	20 W High-Power Picosecond Single-Walled Carbon Nanotube Based MOPA Laser System. Journal of Lightwave Technology, 2012, 30, 2713-2717.	4.6	14
131	Nonlinear optical properties of two-dimensional palladium ditelluride (PdTe2) and its application as aerosol jet printed saturable absorbers for broadband ultrafast photonics. Applied Materials Today, 2022, 26, 101296.	4.3	14
132	Intense near-infrared emission of 1.23μm in erbium-doped low-phonon-energy fluorotellurite glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 111, 49-53.	3.9	13
133	Photoluminescence of PdS ₂ and PdSe ₂ quantum dots. RSC Advances, 2019, 9, 38077-38084.	3.6	13
134	Photodetectors: Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications (Adv. Funct. Mater. 1/2019). Advanced Functional Materials, 2019, 29, 1970005.	14.9	13
135	Intense Near-UV Upconversion Luminescence in \${m Tm}^{3+}/{m Yb}^{3+}\$ Co-Doped Low-Phonon-Energy Lithium Gallogermanate Oxide Glass. IEEE Photonics Technology Letters, 2012, 24, 1726-1729.	2.5	12
136	Superbroadband NIR Photoluminescence in \${m Nd}^{3+}/{m Tm}^{3+}/{m Er}^{3+}\$ Codoped Fluorotellurite Glasses. IEEE Photonics Technology Letters, 2012, 24, 924-926.	2.5	11
137	Improved multiphoton ultraviolet upconversion photoluminescence in ultrasmall core-shell nanocrystals. Optics Letters, 2014, 39, 6265.	3.3	11
138	Ultra-high adsorption of cationic methylene blue on two dimensional titanate nanosheets. RSC Advances, 2019, 9, 5891-5894.	3.6	11
139	Fabrication and characterization of fibre Bragg gratings for near 2 Âm operation. Measurement Science and Technology, 2003, 14, 1747-1752.	2.6	10
140	High-power passively mode-locked Nd:YVO_4 laser using SWCNT saturable absorber fabricated by dip coating method. Optics Express, 2015, 23, 4880.	3.4	10
141	Time and pressure dependent deformation of microcontact printed channels fabricated using self-assembled monolayers of alkanethiol on gold. Journal of Science: Advanced Materials and Devices, 2017, 2, 385-391.	3.1	10
142	Enhancing the energy conversion efficiency of low mobility solar cells by a 3D device architecture. Journal of Materials Chemistry C, 2019, 7, 10289-10296.	5.5	10
143	Broadband conversion of ultraviolet to visible and near-infrared emission in Gd3+/Yb3+ codoped germanate glass. Journal of Non-Crystalline Solids, 2013, 376, 26-29.	3.1	9
144	Improved anatase phase stability in small diameter TiO2 nanotube arrays for high performance dye-sensitized solar cells. Journal of Alloys and Compounds, 2014, 607, 50-53.	5.5	9

-

#	Article	IF	CITATIONS
145	Fabrication of luminescent PtS2 quantum dots. Journal of Luminescence, 2019, 211, 227-232.	3.1	9
146	Broadband 1.20μm emission in Tm3+-doped and Tm3+/Tb3+, Eu3+ codoped gallogermanate glasses. Optical Materials, 2012, 34, 1776-1780.	3.6	8
147	Microfluidic flow direction control using continuous-wave laser. Sensors and Actuators A: Physical, 2012, 188, 329-334.	4.1	8
148	Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet. Optical Materials, 2020, 101, 109694.	3.6	8
149	Narrow-Linewidth Tunable Lasers With Retro-Reflective External Cavity. IEEE Photonics Technology Letters, 2012, 24, 1591-1593.	2.5	7
150	The generation of dissipative solitons in an all-fiber passively mode-locked laser based on semiconduct type of carbon nanotubes absorber. Optical Fiber Technology, 2013, 19, 200-205.	2.7	7
151	Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties. Applied Nanoscience (Switzerland), 2018, 8, 339-346.	3.1	7
152	Tin telluride quantum dots as a new saturable absorber for a mode-locked Yb+ doped fiber laser. Optics and Laser Technology, 2021, 142, 107258.	4.6	7
153	Beyond Tristimulus Color Vision with Perovskite-Based Multispectral Sensors. ACS Applied Materials & Interfaces, 2022, 14, 11645-11653.	8.0	7
154	Mechanism of non-catalytic chemical vapor deposition growth of all-inorganic CsPbX ₃ (X) Tj ETQq0	0 0 rgBT /	Overlock 10
155	Midâ€Infrared Photodetectors: Van der Waals Epitaxial Growth of Mosaicâ€Like 2D Platinum Ditelluride Layers for Roomâ€Temperature Midâ€Infrared Photodetection up to 10.6 µm (Adv. Mater. 52/2020). Advanced Materials, 2020, 32, 2070394.	21.0	6
156	Nanosecond Q-switched operation of coupled Yb and Tm fibre lasers. Journal Physics D: Applied Physics, 2005, 38, 1365-1370.	2.8	5
157	Q-switched operation of a Nd:YCOB laser. Optics Communications, 2009, 282, 97-100.	2.1	5
158	Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm. Chinese Physics B, 2013, 22, 094210.	1.4	5
159	Upconversion Luminescence of Tm3+/Yb3+ Codoped Oxyfluoride Glass Ceramics Containing Ba2YbF7 Nanocrystals. Integrated Ferroelectrics, 2013, 142, 31-36.	0.7	5
160	Lensed Water-Core Teflon-Amorphous Fluoroplastics Optical Fiber. Journal of Lightwave Technology, 2014, 32, 1538-1542.	4.6	5
161	Photodetectors: Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction (Adv. Funct. Mater. 16/2018). Advanced Functional Materials, 2018, 28, 1870106.	14.9	5
162	Localized surface plasmon resonance induced temperature enhancement by MWCNT-HfTe2 van der Waals heterostructure. , 2022, , .		5

Yuen Hong Tsang

#	Article	IF	CITATIONS
163	Nanophotonic-structured front contact for high-performance perovskite solar cells. Science China Materials, 2022, 65, 1727-1740.	6.3	5
164	Natural Porous Materials for Interfacial Solar Steam Generation toward Clean Water Production. Solar Rrl, 2022, 6, .	5.8	5
165	Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron. , 2006, , .		4
166	Reversible photochromic and photoluminescence in iodide perovskites. Thin Solid Films, 2021, 737, 138950.	1.8	4
167	A model of a QCW diode pumped passively Q-switched solid state laser. Journal of Modern Optics, 2007, 54, 1685-1694.	1.3	3
168	Recent advances in mid-IR optical fibres for chemical and biological sensing in the 2-15μm spectral range. , 2009, , .		3
169	Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm. Optics Communications, 2012, 285, 5372-5374.	2.1	3
170	UV-curable liquid-core fiber lenses with controllable focal length. Optics Express, 2013, 21, 5505.	3.4	3
171	Correction to Multifunctional Sensor Based on Porous Carbon Derived from Metal–Organic Frameworks for Real Time Health Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 10599-10599.	8.0	3
172	Multi-mode 2 μm Tm-silica fibre lasers with 1.61 μ m in-band pumping. Journal of Modern Opt 2007, 54, 1659-1667.	tics, 1.3	2
173	Record performance from a passively Q-switched Yb:Er:YVO 4 laser. , 2008, , .		2
174	CW and Q-switched 2.1 μm Tm ³⁺ /Ho ³⁺ /Yb ³⁺ -triply-doped tellurite fibre lasers. Proceedings of SPIE, 2008, , .	0.8	2
175	Numerical rate equation modelling of a 1.61 μm pumped ~2 μm Tm3+-doped tellurite fibre laser. , 2008, , .		1
176	A mechanically Q-switched Yb:Er:YVO 4 laser. Proceedings of SPIE, 2008, , .	0.8	1
177	Strontium titanate/silicon-based terahertz photonic crystal multilayer stack. Applied Physics A: Materials Science and Processing, 2012, 107, 109-115.	2.3	1
178	Controllable parabolic lensed liquid-core optical fiber by using electrostatic force. Optics Express, 2014, 22, 20948.	3.4	1
179	Optics in high efficiency perovskite tandem solar cells. , 2022, , 319-345.		1
180	Stable Singleâ€Mode Lasing from a Hybrid Perovskite–Polymer Fiber. Advanced Optical Materials, 0, , 2200439.	7.3	1

#	Article	IF	CITATIONS
181	Three colour operation of a diode-pumped broadband Yb-doped fibre laser. , 2006, , .		0
182	Intra-cavity second-harmonic and sum-frequency generation in a diode-pumped broadband Yb-doped fibre laser. Optics Communications, 2006, 266, 317-322.	2.1	0
183	Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser. Proceedings of SPIE, 2007, , .	0.8	Ο
184	A Q-switched Nd:YCOB laser. , 2008, , .		0
185	Broadband single-walled carbon nanotubes absorber for solid-state ultrafast lasers. Laser Physics, 2012, 22, 1043-1048.	1.2	Ο
186	Innenrücktitelbild: Constructing Interfacial Energy Transfer for Photon Up―and Downâ€Conversion from Lanthanides in a Core–Shell Nanostructure (Angew. Chem. 40/2016). Angewandte Chemie, 2016, 128, 12731-12731.	2.0	0
187	Layer dependent second harmonic generation of two-dimensional gallium sulfide (GaS). , 2022, , .		0