
Terry F Wall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3025022/publications.pdf Version: 2024-02-01

Τερρν Ε \λ/λιι

#	Article	IF	CITATIONS
1	Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 2005, 31, 283-307.	15.8	1,318
2	An overview on oxyfuel coal combustion—State of the art research and technology development. Chemical Engineering Research and Design, 2009, 87, 1003-1016.	2.7	715
3	Combustion processes for carbon capture. Proceedings of the Combustion Institute, 2007, 31, 31-47.	2.4	522
4	Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 2004, 83, 2139-2150.	3.4	414
5	Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science, 2007, 33, 135-170.	15.8	351
6	Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40, 55-125.	2.3	346
7	Characterising ash of biomass and waste. Fuel Processing Technology, 2007, 88, 1071-1081.	3.7	330
8	The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science, 2002, 28, 405-433.	15.8	252
9	Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology, 2009, 90, 797-802.	3.7	252
10	A char morphology system with applications to coal combustion. Fuel, 1990, 69, 225-239.	3.4	181
11	Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy and Combustion Science, 2011, 37, 69-88.	15.8	165
12	Characteristics of Chars from Low-Temperature Pyrolysis of Lignite. Energy & Fuels, 2014, 28, 275-284.	2.5	145
13	Pyrolytic characteristics of blended coal and woody biomass. Fuel, 2004, 83, 745-750.	3.4	143
14	An Empirical Method for the Prediction of Coal Ash Slag Viscosity. Energy & amp; Fuels, 2003, 17, 731-737.	2.5	139
15	Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel, 2008, 87, 1042-1049.	3.4	127
16	Assessing slagging and fouling during biomass combustion: A thermodynamic approach allowing for alkali/ash reactions. Fuel Processing Technology, 2007, 88, 1044-1052.	3.7	125
17	Selection of Suitable Oxygen Carriers for Chemical Looping Air Separation: A Thermodynamic Approach. Energy & Fuels, 2012, 26, 2038-2045.	2.5	120
18	Thermal conductivity of coal ash and slags and models used. Fuel, 2000, 79, 1697-1710.	3.4	114

#	Article	IF	CITATIONS
19	Fine ash formation during combustion of pulverised coal–coal property impacts. Fuel, 2006, 85, 185-193.	3.4	114
20	Ash Formation Mechanisms during pf Combustion in Reducing Conditions. Energy & Fuels, 2000, 14, 150-159.	2.5	111
21	The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel, 2000, 79, 617-626.	3.4	108
22	Submicron ash formation from coal combustion. Fuel, 2005, 84, 1206-1214.	3.4	103
23	On the Effects of High Pressure and Heating Rate during Coal Pyrolysis on Char Gasification Reactivity. Energy & Fuels, 2003, 17, 887-895.	2.5	97
24	Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment. International Journal of Greenhouse Gas Control, 2011, 5, S5-S15.	2.3	97
25	The properties and thermal effects of ash deposits in coal-fired furnaces. Progress in Energy and Combustion Science, 1993, 19, 487-504.	15.8	93
26	Pyrolysis and Combustion Characteristics of an Indonesian Low-Rank Coal under O ₂ /N ₂ and O ₂ /CO ₂ Conditions ^{â€} . Energy & Fuels, 2010, 24, 160-164.	2.5	89
27	High-Temperature Conversion of SO ₂ to SO ₃ : Homogeneous Experiments and Catalytic Effect of Fly Ash from Air and Oxy-fuel Firing. Energy & Fuels, 2014, 28, 7243-7251.	2.5	86
28	An Experimental Study on the Effect of System Pressure on Char Structure of an Australian Bituminous Coal. Energy & Fuels, 2000, 14, 282-290.	2.5	85
29	A mathematical model of ash formation during pulverized coal combustion. Fuel, 2002, 81, 337-344.	3.4	85
30	A computational fluid dynamics based study of the combustion characteristics of coal blends in pulverised coal-fired furnace. Fuel, 2004, 83, 1543-1552.	3.4	85
31	Ignition of coal particles: the influence of experimental technique. Fuel, 1994, 73, 1114-1119.	3.4	84
32	Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures. Fuel, 2000, 79, 1145-1154.	3.4	84
33	Mineral matter in coal and the thermal performance of large boilers. Progress in Energy and Combustion Science, 1979, 5, 1-29.	15.8	83
34	Reactivity of Al ₂ O ₃ - or SiO ₂ -Supported Cu-, Mn-, and Co-Based Oxygen Carriers for Chemical Looping Air Separation. Energy & Fuels, 2014, 28, 1284-1294.	2.5	81
35	Modeling char combustion: The influence of parent coal petrography and pyrolysis pressure on the structure and intrinsic reactivity of its char. Proceedings of the Combustion Institute, 2000, 28, 2233-2241.	2.4	78
36	The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion. Fuel, 2001, 80, 1333-1340.	3.4	78

#	Article	IF	CITATIONS
37	Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel, 2013, 107, 356-370.	3.4	75
38	Modelling of a pressurised entrained flow coal gasifier: the effect of reaction kinetics and char structure. Fuel, 2000, 79, 1767-1779.	3.4	73
39	Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: the thermodynamic aspects involving silica, sodium, sulphur and chlorine. Fuel, 1982, 61, 87-92.	3.4	72
40	Ash Liberation from Included Minerals during Combustion of Pulverized Coal:Â The Relationship with Char Structure and Burnout. Energy & Fuels, 1999, 13, 1197-1202.	2.5	72
41	Experimental Study on Microwave Pyrolysis of an Indonesian Low-Rank Coal. Energy & Fuels, 2014, 28, 254-263.	2.5	71
42	A differential scanning calorimetric (DSC) study on the characteristics and behavior of water in low-rank coals. Fuel, 2014, 135, 243-252.	3.4	71
43	Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel, 2010, 89, 868-873.	3.4	69
44	Mechanisms for the ignition of pulverized coal particles. Combustion and Flame, 1990, 81, 119-132.	2.8	68
45	The ignition of coal particles. Fuel, 1991, 70, 1011-1016.	3.4	64
46	Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal. Journal of Environmental Sciences, 2009, 21, S127-S130.	3.2	64
47	Analysis on Chemical Reaction Kinetics of CuO/SiO ₂ Oxygen Carriers for Chemical Looping Air Separation. Energy & Fuels, 2014, 28, 173-182.	2.5	62
48	Index for Iron-Based Slagging for Pulverized Coal Firing in Oxidizing and Reducing Conditions. Energy & Fuels, 2000, 14, 349-354.	2.5	61
49	BIOMASS GASIFICATION KINETICS: INFLUENCES OF PRESSURE AND CHAR STRUCTURE. Combustion Science and Technology, 2005, 177, 765-791.	1.2	60
50	The Effect of Pressure on Ash Formation during Pulverized Coal Combustion. Energy & Fuels, 2000, 14, 745-750.	2.5	59
51	Mineral matter–organic matter association characterisation by QEMSCAN and applications in coal utilisation. Fuel, 2005, 84, 1259-1267.	3.4	59
52	Flow properties of biomass and coal blends. Fuel Processing Technology, 2006, 87, 281-288.	3.7	58
53	Fragmentation Behavior of Pyrite and Calcite during High-Temperature Processing and Mathematical Simulation. Energy & Fuels, 2001, 15, 389-394.	2.5	57
54	Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: experimental aspects of sodium silicate formation and the formation of deposits. Fuel, 1982, 61, 93-99.	3.4	56

#	Article	IF	CITATIONS
55	Nitrogen oxide formation from australian coals. Combustion and Flame, 1985, 62, 21-30.	2.8	56
56	The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel, 2005, 84, 63-69.	3.4	56
57	The optical properties of fly ash in coal fired furnaces. Combustion and Flame, 1985, 61, 145-151.	2.8	54
58	Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 2000, 79, 627-633.	3.4	54
59	Experimental Options for Determining the Temperature for the Onset of Sintering of Coal Ash. Energy & Fuels, 2000, 14, 227-233.	2.5	54
60	Gas cleaning challenges for coal-fired oxy-fuel technology with carbon capture and storage. Fuel, 2013, 108, 85-90.	3.4	54
61	Swelling behaviour of individual coal particles in the single particle reactor. Fuel, 2003, 82, 1977-1987.	3.4	53
62	Computational Fluid Dynamics Modeling of NO _{<i>x</i>} Reduction Mechanism in Oxy-Fuel Combustion ^{â€} . Energy & Fuels, 2010, 24, 131-135.	2.5	52
63	Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion. Proceedings of the Combustion Institute, 2011, 33, 1731-1738.	2.4	50
64	Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion. Fuel, 2013, 103, 932-942.	3.4	50
65	SO ₃ Emissions and Removal by Ash in Coal-Fired Oxy-Fuel Combustion. Energy & Fuels, 2014, 28, 5296-5306.	2.5	50
66	Modeling the development of char structure during the rapid heating of pulverized coal. Combustion and Flame, 2004, 136, 519-532.	2.8	47
67	Reducing fly ash deposition by pretreatment of brown coal: Effect of aluminium on ash character. Fuel Processing Technology, 1996, 46, 117-132.	3.7	44
68	Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. International Journal of Greenhouse Gas Control, 2013, 18, 15-22.	2.3	44
69	The character of ash deposits and the thermal performance of furnaces. Fuel Processing Technology, 1995, 44, 143-153.	3.7	43
70	Mercury Emissions and Removal by Ash in Coal-Fired Oxy-fuel Combustion. Energy & Fuels, 2014, 28, 123-135.	2.5	42
71	Coal and carbon nanotube production. Fuel, 2003, 82, 2025-2032.	3.4	41
72	Swelling and Char Structures from Density Fractions of Pulverized Coal. Energy & Fuels, 2003, 17, 1160-1174.	2.5	41

#	Article	IF	CITATIONS
73	Coal Oxidation under Mild Conditions: Current Status and Applications. Chemical Engineering and Technology, 2014, 37, 1635-1644.	0.9	40
74	Combustion kinetics and the heterogeneous ignition of pulverized coal. Combustion and Flame, 1986, 66, 151-157.	2.8	39
75	Ash Formation from Excluded Minerals Including Consideration of Mineralâ^'Mineral Associationsâ€. Energy & Fuels, 2007, 21, 461-467.	2.5	38
76	An Investigation of Factors Affecting the Physical Characteristics of Flyash Formed in a Laboratory Scale Combustor. Combustion Science and Technology, 1986, 48, 177-190.	1.2	37
77	An analysis of the ignition of coal dust clouds. Combustion and Flame, 1993, 92, 475-480.	2.8	37
78	Devolatilization of bituminous coals at medium to high heating rates. Combustion and Flame, 1986, 63, 329-337.	2.8	36
79	Measurement of the Sintering Kinetics of Coal Ash. Energy & amp; Fuels, 2000, 14, 994-1001.	2.5	36
80	Effect of Pressure on Char Formation during Pyrolysis of Pulverized Coal. Energy & Fuels, 2004, 18, 1346-1353.	2.5	36
81	Use of TMA to predict deposition behaviour of biomass fuels. Fuel, 2007, 86, 2446-2456.	3.4	36
82	Indicators of ignition for clouds of pulverized coal. Combustion and Flame, 1988, 72, 111-118.	2.8	35
83	Interactions between vitrinite and inertinite-rich coals and the ionic liquid – [bmim][Cl]. Fuel, 2014, 119, 214-218.	3.4	35
84	Fly Ash Characteristics and Radiative Heat Transfer in Pulverized-Coal-Fired Furnaces. Combustion Science and Technology, 1981, 26, 107-121.	1.2	33
85	Coal macerals separation by reflux classification and thermo-swelling analysis based on the Computer Aided Thermal Analysis. Fuel, 2013, 103, 1023-1031.	3.4	33
86	Low-Temperature Oxidation Characteristics of Lignite Chars from Low-Temperature Pyrolysis. Energy & Fuels, 2014, 28, 5612-5622.	2.5	33
87	In-situ study of plastic layers during coking of six Australian coking coals using a lab-scale coke oven. Fuel Processing Technology, 2019, 188, 51-59.	3.7	33
88	Development of emittance of coal particles during devolatilisation and burnoff. Fuel, 1999, 78, 511-519.	3.4	31
89	Study of chemical structure transition in the plastic layers sampled from a pilot-scale coke oven using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer. Fuel, 2019, 242, 277-286.	3.4	31
90	The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC. Fuel, 2005, 84, 109-114.	3.4	30

#	Article	IF	CITATIONS
91	Associations of physical, chemical with thermal changes during coking as coal heats – Experiments on coal maceral concentrates. Fuel, 2015, 147, 1-8.	3.4	30
92	The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning. Fuel Processing Technology, 2016, 152, 102-107.	3.7	30
93	Experimental studies of ignition behaviour and combustion reactivity of pulverized fuel particles. Fuel, 1992, 71, 1239-1246.	3.4	29
94	Laser ignition of combustible gases by radiative heating of small particles. Combustion and Flame, 1992, 91, 399-412.	2.8	29
95	Maceral separation from coal by the Reflux Classifier. Fuel Processing Technology, 2016, 143, 43-50.	3.7	28
96	The combustion of evolved volatile matter in the vicinity of a coal particle—An evaluation of the diffusion limited model. Combustion and Flame, 1988, 72, 1-12.	2.8	25
97	Effect of pressure on the swelling of density separated coal particles. Fuel, 2005, 84, 1238-1245.	3.4	25
98	Measurement of the Viscosity of Coal-Derived Slag Using Thermomechanical Analysis. Energy & Fuels, 2005, 19, 1078-1083.	2.5	24
99	Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis. Journal of Materials Research and Technology, 2014, 3, 2-8.	2.6	24
100	Changes in Solvent-Extracted Matter for Heated Coal during Metaplast Formation Using High-Range Mass Spectrometry. Energy & Fuels, 2015, 29, 7101-7113.	2.5	24
101	Oxyfuel derived CO2 compression experiments with NO , SO and mercury removal—Experiments involving compression of slip-streams from the Callide Oxyfuel Project (COP). International Journal of Greenhouse Gas Control, 2015, 41, 50-59.	2.3	24
102	Sodium ash reactions during combustion of pulverised coal. Proceedings of the Combustion Institute, 1991, 23, 1313-1321.	0.3	23
103	Dynamic behaviour of coal macerals during pyrolysis – Associations between physical, thermal and chemical changes. Proceedings of the Combustion Institute, 2013, 34, 2393-2400.	2.4	23
104	Mercury and SO3 Emissions in Oxy-fuel Combustion. Energy Procedia, 2014, 63, 386-402.	1.8	23
105	Sulfur Capture by Fly Ash in Air and Oxy-fuel Pulverized Fuel Combustion. Energy & Fuels, 2014, 28, 5472-5479.	2.5	22
106	Low-Cost Carbon Fibre Derived from Sustainable Coal Tar Pitch and Polyacrylonitrile: Fabrication and Characterisation. Materials, 2019, 12, 1281.	1.3	22
107	Stress distribution in a packed bed above raceway cavities formed by an air jet. AICHE Journal, 1990, 36, 461-468.	1.8	21
108	The ignition of single pulverized coal particles: Minimum laser power required. Fuel, 1994, 73, 647-655.	3.4	21

#	Article	IF	CITATIONS
109	Ultrasonic-assisted preparation of highly reactive Fe–Zn sorbents supported on activated-char for desulfurization of COG. Fuel Processing Technology, 2015, 135, 187-194.	3.7	21
110	Thermomechanical Analysis of Coal Ash:  The Influence of the Material for the Sample Assembly. Energy & Fuels, 2000, 14, 326-335.	2.5	20
111	Thermo-swelling Properties of Particle Size Cuts of Coal Maceral Concentrates. Energy & Fuels, 2015, 29, 4893-4901.	2.5	20
112	An overview of the Australian biomass resources and utilization technologies. BioResources, 2006, 1, 93-115.	0.5	20
113	The char structure characterization from the coal reflectogram. Fuel, 2005, 84, 1268-1276.	3.4	19
114	Comparative Study on the Combustion Performance of Coals on a Pilot-Scale Test Rig Simulating Blast Furnace Pulverized Coal Injection and a Lab-Scale Drop-Tube Furnace. Energy & Fuels, 2014, 28, 363-368.	2.5	19
115	Modeling of coal devolatilization and its effect on combustion calculations. Combustion and Flame, 1985, 62, 85-89.	2.8	18
116	Ignition temperature of pulverized coal particles: Experimental techniques and coal-related influences. Combustion and Flame, 1990, 79, 333-339.	2.8	18
117	The reactivity of pulverized coal char particles: experiments using ignition, burnout and DTG techniques and partly burnt chars. Fuel, 1992, 71, 1247-1253.	3.4	17
118	False deformation temperatures for ash fusibility associated with the conditions for ash preparation. Fuel, 1999, 78, 1057-1063.	3.4	17
119	Dynamic Elemental Thermal Analysis: A technique for continuous measurement of carbon, hydrogen, oxygen chemistry of tar species evolved during coal pyrolysis. Fuel, 2013, 103, 764-772.	3.4	17
120	Impacts of Sulfur Oxides on Mercury Speciation and Capture by Fly Ash during Oxy-fuel Pulverized Coal Combustion. Energy & Fuels, 2016, 30, 8658-8664.	2.5	17
121	The use of LDI-TOF imaging mass spectroscopy to study heated coal with a temperature gradient incorporating the plastic layer and semi-coke. Fuel, 2016, 165, 33-40.	3.4	17
122	Fibre optic ignition of combustible gas mixtures by the radiative heating of small particles. Proceedings of the Combustion Institute, 1992, 24, 1761-1767.	0.3	16
123	Dissolution of lime into synthetic coal ash slags. Fuel Processing Technology, 1998, 56, 45-53.	3.7	16
124	CO 2 quality control in Oxy-fuel technology for CCS: SO 2 removal by the caustic scrubber in Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 2016, 51, 207-217.	2.3	16
125	The pyrolysis behaviour of solvent extracted metaplast material from heated coal using LDI-TOF mass spectroscopy measurements. Journal of Analytical and Applied Pyrolysis, 2016, 120, 258-268.	2.6	16
126	Coal Ash Buildup on Ceramic Filters in a Hot Gas Filtration System. Energy & Fuels, 2003, 17, 316-320.	2.5	15

#	Article	IF	CITATIONS
127	Linking Thermoplastic Development and Swelling with Molecular Weight Changes of a Coking Coal and Its Pyrolysis Products. Energy & Fuels, 2016, 30, 3906-3916.	2.5	15
128	The estimation of char reactivity from coal reflectogram. Fuel, 2005, 84, 127-134.	3.4	14
129	Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations. Science of the Total Environment, 2008, 391, 104-113.	3.9	14
130	Sulphur retention as CaS(s) during coal combustion: a modelling study to define mechanisms and possible technologies. Fuel, 1993, 72, 633-643.	3.4	13
131	Thermomechanical analysis of laboratory ash, combustion ash and deposits from coal combustion. Fuel Processing Technology, 2007, 88, 1099-1107.	3.7	13
132	Reactivity Study of Two Coal Chars Produced in a Drop-Tube Furnace and a Pulverized Coal Injection Rig. Energy & Fuels, 2012, 26, 4690-4695.	2.5	13
133	Combustion kinetics in the modeling of large, pulverized fuel furnaces: A numerical experiment in sensitivity. AICHE Journal, 1977, 23, 440-448.	1.8	12
134	Characterization of Ash Deposition and Heat Transfer Behavior of Coals during Combustion in a Pilot-Scale Facility and Full-Scale Utility. Energy & Fuels, 2009, 23, 2570-2575.	2.5	12
135	CO2 quality control in oxy-fuel combustion: A dynamic study on the absorption of SO2 into sodium based aqueous solutions relevant to scrubbing prior to CO2 compression. International Journal of Greenhouse Gas Control, 2013, 12, 2-8.	2.3	12
136	Oxyfuel CO 2 compression: The gas phase reaction of elemental mercury and NO x at high pressure and absorption into nitric acid. International Journal of Greenhouse Gas Control, 2014, 29, 125-134.	2.3	12
137	Combustion of particles in a large pulverized brown coal flame. Combustion and Flame, 1980, 39, 69-81.	2.8	11
138	Mercury and SO 3 measurements on the fabric filter at the Callide Oxy-fuel Project during air and oxy-fuel firing transitions. International Journal of Greenhouse Gas Control, 2016, 47, 221-232.	2.3	11
139	Separation and analysis of high range extractable molecules formed during coal pyrolysis using coupled thin layer chromatography-imaging mass spectrometry (TLC-LDI-IMS). Fuel, 2017, 196, 269-279.	3.4	11
140	Rate Limitations of Lime Dissolution into Coal Ash Slag. Energy & amp; Fuels, 2008, 22, 3626-3630.	2.5	10
141	High pressure conversion of NO x and Hg and their capture as aqueous condensates in a laboratory piston-compressor simulating oxy-fuel CO 2 compression. International Journal of Greenhouse Gas Control, 2014, 29, 209-220.	2.3	10
142	A comparative study on the design of direct contact condenser for air and oxy-fuel combustion flue gas based on Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 2018, 75, 74-84.	2.3	10
143	A Mechanistic Approach To Characterize Coal Heterogeneity in Predicting High-Temperature Volatile Matter Yields. Energy & Fuels, 2004, 18, 1716-1722.	2.5	9
144	CO2 quality control by scrubbing in oxy-fuel combustion prior to compression: Relating pH to the liquid composition from absorption of SO2 into sodium based solutions to identify an operational pH window. International Journal of Greenhouse Gas Control, 2013, 19, 462-470.	2.3	9

#	Article	IF	CITATIONS
145	Dynamic Elemental Thermal Analysis (DETA) – A characterisation technique for the production of biochar and bio-oil from biomass resources. Fuel, 2013, 108, 656-667.	3.4	9
146	The ignition of coal particles and explosions in surrounding combustible gases during heating by laser irradiation. Fuel, 1992, 71, 1206-1207.	3.4	8
147	CO 2 quality control through scrubbing in oxy-fuel combustion: Rate limitation due to S(IV) oxidation in sodium solutions in scrubbers and prior to waste disposal. International Journal of Greenhouse Gas Control, 2015, 39, 148-157.	2.3	8
148	Impact of Coal Pyrolysis Products as a Rheological Additive on Thermoplasticity of a Coking Coal. Energy & Fuels, 2018, 32, 4382-4390.	2.5	8
149	Coal burnout in the IFRF No. 1 furnace. Combustion and Flame, 1986, 66, 137-150.	2.8	7
150	CO2 quality control through scrubbing in oxy-fuel combustion: Simulations on the absorption rates of SO2 into droplets to identify operational pH regions. International Journal of Greenhouse Gas Control, 2015, 37, 115-126.	2.3	7
151	Field measurements of NO x and mercury from oxy-fuel compression condensates at the Callide Oxyfuel Project. International Journal of Greenhouse Gas Control, 2015, 42, 485-493.	2.3	7
152	Conceptual design of a packed bed for the removal of SO 2 in Oxy-fuel combustion prior to compression. International Journal of Greenhouse Gas Control, 2016, 53, 65-78.	2.3	7
153	Impacts of Mild Pyrolysis and Solvent Extraction on Coking Coal Thermoplasticity. Energy & Fuels, 2016, 30, 9293-9302.	2.5	7
154	The Heterogeneity of Coal Chemical Properties Derived from a Reflectogram. Energy & Fuels, 2005, 19, 130-137.	2.5	6
155	Thermo-swelling Behavior of Australian Coking Coals from Different Basins: Relating to Rank and Maceral Compositions. Energy & Fuels, 2016, 30, 10126-10135.	2.5	6
156	Modelling of High Intensity Combustion of Pulversized Coal in a Tabular Combustor. Combustion Science and Technology, 1987, 55, 89-113.	1.2	5
157	STM examination of O2 etching on graphite surfaces in air. Fuel, 1993, 72, 1454-1455.	3.4	5
158	An analysis of the angular scatter measurement to determine the optical constants of coal and ashy materials. International Communications in Heat and Mass Transfer, 1996, 23, 809-821.	2.9	5
159	CO 2 quality control through scrubbing in oxy-fuel combustion: An evaluation of operational pH impacts, and prediction of SO 2 absorption rate at steady state. International Journal of Greenhouse Gas Control, 2015, 32, 37-46.	2.3	5
160	Evaluating the Thermal Extrusion Behavior of a Coking Coal for Direct Carbon Fiber Production. Energy & Fuels, 2018, 32, 4528-4537.	2.5	5
161	Thermoplastic development of coking and non-coking maceral concentrates and molecular weight distribution of their pyrolysis products. Journal of Analytical and Applied Pyrolysis, 2018, 129, 72-85.	2.6	5
162	Impact of large sized inertinite particles on thermo-swelling and volatile release of coking coals. Fuel Processing Technology, 2019, 193, 63-72.	3.7	5

#	Article	IF	CITATIONS
163	Factors affecting the vaporisation of silica during coal combustion. Fuel Processing Technology, 2007, 88, 157-164.	3.7	4
164	Intrinsic reactivity of carbons to oxygen. Fuel, 1983, 62, 484-486.	3.4	3
165	Chemical Changes of Australian Coking Coals from Different Basins with Various Ranks and Maceral Compositions: Linking to Both Physical and Thermal Changes. Energy & Fuels, 2016, 30, 10136-10147.	2.5	3
166	An investigation of the molecular change in coal maceral concentrates prepared under dimensional heating condition. Fuel Processing Technology, 2019, 189, 80-88.	3.7	2
167	Volatile release from maceral concentrates of pulverised coals used for pulverised coal injection at temperatures of 1550ÅŰC and their relationship with density. Fuel, 2021, 297, 120784.	3.4	2
168	Dynamic measurement of liquidâ€phase mass transfer coefficient and significance on the SO ₂ absorption rate. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2242.	0.8	1
169	STM examination of O2 etching on graphite surfaces in air. Fuel, 1994, 73, 1372.	3.4	0
170	Dataset for the estimation of costs for direct contact condenser. Data in Brief, 2018, 20, 535-543.	0.5	0
171	E304 CHAR MORPHOLOGY FROM THE AUTOMATED REFLECTOGRAM OF A COAL AND ITS IMPLICATIONS ON BURNOUT AND ASH FORMATION. The Proceedings of the International Conference on Power Engineering (ICOPE), 2003, 2003.3, _3-3173-322	0.0	0