

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024814/publications.pdf Version: 2024-02-01

Keli

#	Article	IF	CITATIONS
1	Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 422-427.	7.1	990
2	Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?. Renewable and Sustainable Energy Reviews, 2015, 52, 1107-1122.	16.4	537
3	A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 2019, 12, 906-910.	12.9	493
4	Fine particulate matter (PM _{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 2019, 19, 11031-11041.	4.9	442
5	Impact of energy conservation policies on the green productivity in China's manufacturing sector: Evidence from a three-stage DEA model. Applied Energy, 2016, 168, 351-363.	10.1	307
6	Economic growth model, structural transformation, and green productivity in China. Applied Energy, 2017, 187, 489-500.	10.1	208
7	Metafroniter energy efficiency with CO 2 emissions and its convergence analysis for China. Energy Economics, 2015, 48, 230-241.	12.1	189
8	Decomposition of intensity of energy-related CO 2 emission in Chinese provinces using the LMDI method. Energy Policy, 2016, 92, 369-381.	8.8	182
9	The nonlinear impacts of industrial structure on China's energy intensity. Energy, 2014, 69, 258-265.	8.8	158
10	How to promote energy efficiency through technological progress in China?. Energy, 2018, 143, 812-821.	8.8	143
11	Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the United States of America, 2021, 118, .	7.1	138
12	Market segmentation and urban CO2 emissions in China: Evidence from the Yangtze River Delta region. Journal of Environmental Management, 2019, 248, 109324.	7.8	114
13	Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model. Energy Policy, 2016, 89, 214-223.	8.8	105
14	Measuring green productivity growth of Chinese industrial sectors during 1998–2011. China Economic Review, 2015, 36, 279-295.	4.4	103
15	Effects of the terms and characteristics of cadres on environmental pollution: Evidence from 230 cities in China. Journal of Environmental Management, 2019, 232, 179-187.	7.8	96
16	Environmental regulation, total factor productivity, and enterprise duration: Evidence from China. Business Strategy and the Environment, 2020, 29, 2284-2296.	14.3	93
17	Impact of coal sector's de-capacity policy on coal price. Applied Energy, 2020, 265, 114802.	10.1	87
18	Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China. Geophysical Research Letters, 2018, 45, 2072-2081.	4.0	71

Ke Li

#	Article	IF	CITATIONS
19	Choice of technological change for China's low-carbon development: Evidence from three urban agglomerations. Journal of Environmental Management, 2018, 206, 1308-1319.	7.8	69
20	Exploring the rebound effect from the perspective of household: An analysis of China's provincial level. Energy Economics, 2018, 75, 345-356.	12.1	57
21	Industrial activity, energy structure, and environmental pollution in China. Energy Economics, 2021, 104, 105633.	12.1	53
22	The path of technological progress for China's low-carbon development: Evidence from three urban agglomerations. Journal of Cleaner Production, 2018, 178, 644-654.	9.3	49
23	How does administrative pricing affect energy consumption and CO2 emissions in China?. Renewable and Sustainable Energy Reviews, 2015, 42, 952-962.	16.4	46
24	The energy rebound effects across China's industrial sectors: An output distance function approach. Applied Energy, 2016, 184, 1165-1175.	10.1	44
25	The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis. Energy Policy, 2016, 98, 62-72.	8.8	40
26	An Empirical Study on the Relationship between Urban Spatial Form and CO2 in Chinese Cities. Sustainability, 2017, 9, 672.	3.2	39
27	Strategy on China's regional coal consumption control: A case study of Shandong province. Energy Policy, 2018, 112, 316-327.	8.8	38
28	Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 2022, 15, 349-355.	12.9	37
29	Heterogeneity in rebound effects: Estimated results and impact of China's fossil-fuel subsidies. Applied Energy, 2015, 149, 148-160.	10.1	34
30	The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors. Energy, 2015, 86, 403-413.	8.8	32
31	Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 2021, 12, 6308.	12.8	32
32	Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters. Chemosphere, 2022, 295, 133813.	8.2	29
33	Electricity price and industrial green productivity: Does the "low-electricity price trap―exist?. Energy, 2020, 207, 118239.	8.8	27
34	Regulatory policy and misallocation: A new perspective based on the productivity effect of cleaner production standards in China's energy firms. Energy Policy, 2021, 152, 112231.	8.8	27
35	Impact of market misallocations on green TFP: evidence from countries along the Belt and Road. Environmental Science and Pollution Research, 2019, 26, 35034-35048.	5.3	25
36	Green Development Performance in China: A Metafrontier Non-Radial Approach. Sustainability, 2016, 8, 219.	3.2	24

Ke Li

#	Article	IF	CITATIONS
37	Analysis of technological progress and input prices on electricity consumption: Evidence from China. Journal of Cleaner Production, 2018, 196, 1390-1406.	9.3	24
38	Impacts of environmental regulation on firm productivity: evidence from China's Top 1000 Energy-Consuming Enterprises Program. Applied Economics, 2021, 53, 830-844.	2.2	24
39	A comparative analysis on energy-saving and emissions-reduction performance of three urban agglomerations in China. Journal of Cleaner Production, 2019, 220, 953-964.	9.3	23
40	Meteorological influences on daily variation and trend of summertime surface ozone over years of 2015–2020: Quantification for cities in the Yangtze River Delta. Science of the Total Environment, 2022, 834, 155107.	8.0	23
41	Interprovincial food trade and water resources conservation in China. Science of the Total Environment, 2020, 737, 139651.	8.0	22
42	Influence of classified coal consumption on PM2.5 pollution: Analysis based on the panel cointegration and error-correction model. Energy, 2021, 215, 119108.	8.8	22
43	Optimal production efficiency of Chinese coal enterprises under the background of de-capacity—Investigation on the data of coal enterprises in Shandong Province. Journal of Cleaner Production, 2019, 227, 355-365.	9.3	20
44	Does environmental infrastructure investment contribute to emissions reduction? A case of China. Frontiers in Energy, 2020, 14, 57-70.	2.3	20
45	Spatiotemporal variations of PM2.5 pollution and its dynamic relationships with meteorological conditions in Beijing-Tianjin-Hebei region. Chemosphere, 2022, 301, 134640.	8.2	20
46	Sustainability Evaluation Based on a Three-Dimensional Ecological Footprint Model: A Case Study in Hunan, China. Sustainability, 2018, 10, 4498.	3.2	18
47	Differentiated effects of diversified technological sources on China's electricity consumption: Evidence from the perspective of rebound effect. Energy Policy, 2020, 137, 111084.	8.8	16
48	Decreasing methane emissions from China's coal mining with rebounded coal production. Environmental Research Letters, 2021, 16, 124037.	5.2	16
49	MODELLING TECHNOLOGICAL BIAS AND PRODUCTIVITY GROWTH: A CASE STUDY OF CHINA'S THREE URBAN AGGLOMERATIONS. Technological and Economic Development of Economy, 2020, 26, 135-164.	4.6	13
50	Impact of Energy Market Distortions on the Productivity of Energy Enterprises in China. Energy Journal, 2021, 42, .	1.7	12
51	Impact of Environmental Regulations on Environmental Quality and Public Health in China: Empirical Analysis with Panel Data Approach. Sustainability, 2020, 12, 623.	3.2	11
52	Special: Theme of Clean Coal How Policy Strategies Affect Clean Coal Technology Innovation in China? A Patent-Based Approach. Energy and Environment, 2015, 26, 1015-1033.	4.6	7
53	Socioeconomic determinants for the changing food-related scarce water uses in Chinese regions. Journal of Cleaner Production, 2021, 316, 128190.	9.3	5
54	Measuring totalâ€factor energy environment efficiency, energyâ€saving and carbon emissionâ€reduction potential in China's food industry: Based on a metaâ€frontier slacksâ€based measure model. Food and Energy Security, 2022, 11, e324.	4.3	3

Ke Li

#	Article	IF	CITATIONS
55	The impact of differential power pricing policy on firm productivity in China: Evidence from iron and steel firms. Journal of Asian Economics, 2022, 80, 101478.	2.7	3
56	Causal association between metro transits and air quality: China's evidence. Environmental Science and Pollution Research, 2022, 29, 70435-70447.	5.3	1