AleÅ; PÄ›nÄÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024572/publications.pdf

Version: 2024-02-01

64 papers

3,122 citations

218677 26 h-index 53 g-index

68 all docs 68
docs citations

68 times ranked 4164 citing authors

#	Article	IF	CITATIONS
1	<i>CLAVATA</i> modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. New Phytologist, 2022, 234, 149-163.	7.3	21
2	Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. Frontiers in Plant Science, 2022, 13, 804716.	3.6	19
3	Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. New Phytologist, 2022, 235, 263-275.	7.3	23
4	The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin. International Journal of Molecular Sciences, 2022, 23, 2936.	4.1	1
5	Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus. Frontiers in Plant Science, 2022, 13, 844292.	3 . 6	12
6	Impairment of root auxin–cytokinins homeostasis induces collapse of incompatible melon grafts during fruit ripening. Horticulture Research, 2022, 9, .	6.3	2
7	Cytokinins are involved in drought tolerance of <i>Pinus radiata </i> plants originating from embryonal masses induced at high temperatures. Tree Physiology, 2021, 41, 912-926.	3.1	18
8	Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. New Biotechnology, 2021, 61, 69-79.	4.4	7
9	Interactions between zinc and <i>Phomopsis longicolla</i> infection in roots of <i>Glycine max</i> Journal of Experimental Botany, 2021, 72, 3320-3336.	4.8	8
10	Proteostatic Regulation of MEP and Shikimate Pathways by Redox-Activated Photosynthesis Signaling in Plants Exposed to Small Fungal Volatiles. Frontiers in Plant Science, 2021, 12, 637976.	3 . 6	7
11	DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiology, 2021, 187, 103-115.	4.8	22
12	Does scion–rootstock compatibility modulate photoassimilate and hormone trafficking through the graft junction in melon–pumpkin graft combinations?. Plant Science, 2021, 306, 110852.	3.6	9
13	Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. International Journal of Molecular Sciences, 2021, 22, 7993.	4.1	28
14	Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. International Journal of Molecular Sciences, 2021, 22, 9222.	4.1	9
15	Auxin Metabolome Profiling in the Arabidopsis Endoplasmic Reticulum Using an Optimised Organelle Isolation Protocol. International Journal of Molecular Sciences, 2021, 22, 9370.	4.1	6
16	<i>In situ</i> characterisation of phytohormones from wounded <i>Arabidopsis</i> leaves using desorption electrospray ionisation mass spectrometry imaging. Analyst, The, 2021, 146, 2653-2663.	3.5	16
17	Insight into Details of the Photosynthetic Light Reactions and Selected Metabolic Changes in Tomato Seedlings Growing under Various Light Spectra. International Journal of Molecular Sciences, 2021, 22, 11517.	4.1	3
18	Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei. International Journal of Molecular Sciences, 2021, 22, 12369.	4.1	4

#	Article	IF	Citations
19	Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress. BMC Plant Biology, 2021, 21, 602.	3.6	11
20	Embryonal Masses Induced at High Temperatures in Aleppo Pine: Cytokinin Profile and Cytological Characterization. Forests, 2020, 11, 807.	2.1	16
21	Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Scientific Reports, 2020, 10, 13886.	3.3	37
22	Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana. Plants, 2020, 9, 1046.	3.5	23
23	Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety. Frontiers in Plant Science, 2020, 11, 599228.	3.6	18
24	A role for the auxin precursor anthranilic acid in root gravitropism via regulation of <scp>PIN</scp> â€ <scp>FORMED</scp> protein polarity and relocalisation in <i>Arabidopsis</i> Phytologist, 2019, 223, 1420-1432.	7.3	12
25	Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Molecular Plant, 2019, 12, 538-551.	8.3	105
26	Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2569-2579.	4.8	60
27	Deciphering the growth pattern and phytohormonal content in Saskatoon berry (Amelanchier) Tj ETQq1 1 0.7	84314 rgBT	/Oyerlock 10
28	Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiology and Biochemistry, 2018, 125, 74-84.	5.8	42
29	Organâ€specific phytohormone synthesis in two <i>Geranium</i> species with antithetical responses to farâ€red light enrichment. Plant Direct, 2018, 2, e00066.	1.9	10
30	Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants, 2018, 4, 548-553.	9.3	123
31	New insights into auxin metabolism in Bradyrhizobium japonicum. Research in Microbiology, 2018, 169, 313-323.	2.1	31
32	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	3.6	30
33	Physiological and Biochemical Responses of Merwilla plumbea Cultured In Vitro with Different Cytokinins After 1 Year of Growth Under Ex Vitro Conditions. Journal of Plant Growth Regulation, 2017, 36, 83-95.	5.1	0
34	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	6.6	127
35			
00	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	2.5	124

#	Article	IF	CITATIONS
37	Auxin-cytokinin interaction and variations in their metabolic products in the regulation of organogenesis in two Eucomis species. New Biotechnology, 2016, 33, 883-890.	4.4	16
38	Dioxygenase-encoding <i>AtDAO1</i> gene controls IAA oxidation and homeostasis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11016-11021.	7.1	162
39	Cytokinins Are Initial Targets of Light in the Control of Bud Outgrowth. Plant Physiology, 2016, 172, 489-509.	4.8	82
40	Dynamic regulation of auxin oxidase and conjugating enzymes <i>AtDAO1</i> and <i>GH3</i> modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11022-11027.	7.1	119
41	Quantitative Auxin Metabolite Profiling Using Stable Isotope Dilution UHPLCâ€MS/MS. Current Protocols in Plant Biology, 2016, 1, 419-430.	2.8	6
42	Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L Plant Cell Reports, 2016, 35, 77-89.	5.6	11
43	Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta, 2015, 241, 1313-1324.	3.2	51
44	Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell, Tissue and Organ Culture, 2015, 122, 89-100.	2.3	28
45	A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation. Molecular Plant, 2015, 8, 1751-1765.	8.3	36
46	Development of the Poplar (i>-Laccaria bicolor (i> Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response. Plant Physiology, 2015, 169, 890-902.	4.8	70
47	Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Science, 2015, 238, 81-94.	3.6	19
48	Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 2015, 75, 483-492.	3.4	58
49	Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.). PLoS ONE, 2015, 10, e0117793.	2.5	21
50	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	3.5	47
51	Identification and Profiling of Auxin and Auxin Metabolites. , 2014, , 39-60.		6
52	Arabidopsis <i>gulliver1/superroot2â€₹</i> identifies a metabolic basis for auxin and brassinosteroid synergy. Plant Journal, 2014, 80, 797-808.	5.7	35
53	Regulation of Auxin Homeostasis and Gradients in <i>Arabidopsis</i> Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. Plant Cell, 2013, 25, 3858-3870.	6.6	131
54	Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 4907-4916.	6.6	205

#	Article	IF	CITATIONS
55	Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light. Botany, 2012, 90, 990-1006.	1.0	7
56	ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 2012, 3, 941.	12.8	233
57	A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485, 119-122.	27.8	345
58	Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA. Journal of Plant Growth Regulation, 2012, 31, 63-78.	5.1	11
59	ENDOGENOUS CYTOKININS, AUXINS, AND ABSCISIC ACID IN RED ALGAE FROM BRAZIL ¹ . Journal of Phycology, 2010, 46, 1198-1205.	2.3	78
60	PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 918-922.	7.1	175
61	Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta, 2009, 80, 651-655.	5 . 5	86
62	Hormonal and cell division analyses in Watsonia lepida seedlings. Journal of Plant Physiology, 2009, 166, 1497-1507.	3.5	11
63	Endogenous cytokinins, auxins and abscisic acid in <i>Ulva fasciata</i> (Chlorophyta) and <i>Dictyota humifusa</i> (Phaeophyta): towards understanding their biosynthesis and homoeostasis. European Journal of Phycology, 2009, 44, 231-240.	2.0	57
64	New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action. Frontiers in Plant Science, 0, 13, .	3.6	5