Andrew Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024430/publications.pdf

Version: 2024-02-01

72 papers

6,055 citations

108046 37 h-index 68 g-index

73 all docs 73 docs citations

73 times ranked 8814 citing authors

#	Article	IF	CITATIONS
1	Neutrophil Extracellular Traps Induce HumanÂTh17 Cells: Effect of Psoriasis-Associated TRAF3IP2 Genotype. Journal of Investigative Dermatology, 2019, 139, 1245-1253.	0.3	54
2	The small molecule rhodomyrtone suppresses TNF- \hat{l}_{\pm} and IL-17A-induced keratinocyte inflammatory responses: A potential new therapeutic for psoriasis. PLoS ONE, 2018, 13, e0205340.	1.1	20
3	Pustular Psoriasis. , 2018, , 129-143.		O
4	The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Scientific Reports, 2018, 8, 7043.	1.6	28
5	The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis. Journal of Investigative Dermatology, 2017, 137, e87-e91.	0.3	6
6	IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. Journal of Allergy and Clinical Immunology, 2017, 140, 109-120.	1.5	259
7	Resolving Inflammation by Targeting an Ancient Innate Immune Sensor with a Bacterial Metabolite. Journal of Investigative Dermatology, 2017, 137, 2050-2052.	0.3	5
8	IFN- \hat{I}^3 and TNF- \hat{I}^\pm synergism may provide a link between psoriasis and inflammatory atherogenesis. Scientific Reports, 2017, 7, 13831.	1.6	78
9	Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice. Journal of Investigative Dermatology, 2017, 137, 696-705.	0.3	38
10	Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. Journal of Allergy and Clinical Immunology, 2017, 139, 1217-1227.	1.5	38
11	RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Scientific Reports, 2017, 7, 18045.	1.6	37
12	Patient-reported Outcomes and Clinical Response in Patients with Moderate-to-severe Plaque Psoriasis Treated with Tonsillectomy: A Randomized Controlled Trial. Acta Dermato-Venereologica, 2017, 97, 340-345.	0.6	32
13	Systemic abnormalities of psoriatic patients: a retrospective study. Clinical, Cosmetic and Investigational Dermatology, 2016, Volume 9, 443-449.	0.8	4
14	IL-17 Responses Are the Dominant Inflammatory Signal Linking Inverse, Erythrodermic, and Chronic Plaque Psoriasis. Journal of Investigative Dermatology, 2016, 136, 2498-2501.	0.3	31
15	Still waters run deep: latent cytokine activity in nonlesional psoriasis skin. British Journal of Dermatology, 2016, 174, 19-20.	1.4	0
16	HLA-Cw6 homozygosity in plaque psoriasis is associated with streptococcal throat infections and pronounced improvement after tonsillectomy: A prospective case series. Journal of the American Academy of Dermatology, 2016, 75, 889-896.	0.6	27
17	Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon- \hat{l}^2 Production by Epidermal Keratinocytes during Skin Injury. Immunity, 2016, 45, 119-130.	6.6	128
18	In the Red: Deficits in Immune Regulation Underlie Psoriasis Severity. Journal of Investigative Dermatology, 2016, 136, 2124-2126.	0.3	1

#	Article	IF	CITATIONS
19	Interleukin-29: Just an extra string in the bow of Th17 cells or a target for therapeutic exploitation?. Journal of Molecular Medicine, 2016, 94, 373-376.	1.7	O
20	Membrane-Tethered Intracellular DomainÂof Amphiregulin Promotes Keratinocyte Proliferation. Journal of Investigative Dermatology, 2016, 136, 444-452.	0.3	11
21	The EGF receptor ligand amphiregulin controls cell division via FoxM1. Oncogene, 2016, 35, 2075-2086.	2.6	29
22	Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Medicine, 2015, 7, 86.	3.6	80
23	CYR61/CCN1: A Novel Mediator of Epidermal Hyperplasia and Inflammation in Psoriasis?. Journal of Investigative Dermatology, 2015, 135, 2562-2564.	0.3	5
24	Proteomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans. Molecular and Cellular Proteomics, 2015, 14, 109-119.	2.5	38
25	Cytokines in psoriasis. Cytokine, 2015, 73, 342-350.	1.4	281
26	Age-Associated Increase in Skin Fibroblast–Derived Prostaglandin E 2 Contributes to Reduced Collagen Levels in Elderly Human Skin. Journal of Investigative Dermatology, 2015, 135, 2181-2188.	0.3	51
27	Psoriasis drug development and GWAS interpretation through <i>in silico</i> analysis of transcription factor binding sites. Clinical and Translational Medicine, 2015, 4, 13.	1.7	40
28	Erlotinib-Induced Skin Inflammation Is IL-1 Mediated in KC-Tie2 Mice and Human Skin Organ Culture. Journal of Investigative Dermatology, 2015, 135, 910-913.	0.3	16
29	Throat Infections are Associated with Exacerbation in a Substantial Proportion of Patients with Chronic Plaque Psoriasis. Acta Dermato-Venereologica, 2014, 96, 788-91.	0.6	11
30	Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiological Genomics, 2014, 46, 533-546.	1.0	38
31	Psoriasis and the MAITing Game: A Role for IL-17A+ Invariant TCR CD8+ T Cells in Psoriasis?. Journal of Investigative Dermatology, 2014, 134, 2864-2866.	0.3	8
32	Early tissue responses in psoriasis to the antitumour necrosis factor- \hat{l}_{\pm} biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. British Journal of Dermatology, 2014, 171, 97-107.	1.4	45
33	Transcriptome Analysis of Psoriasis in a Large Case–Control Sample: RNA-Seq Provides Insights into Disease Mechanisms. Journal of Investigative Dermatology, 2014, 134, 1828-1838.	0.3	318
34	Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Medical Genomics, 2014, 7, 27.	0.7	43
35	22 Again: IL-22 as a Risk Gene and Important Mediator in Psoriasis. Journal of Investigative Dermatology, 2014, 134, 1501-1503.	0.3	17
36	IL-36 Promotes Myeloid Cell Infiltration, Activation, and Inflammatory Activity in Skin. Journal of Immunology, 2014, 192, 6053-6061.	0.4	245

#	Article	IF	Citations
37	Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics, 2013, 14, 527.	1.2	108
38	The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clinical and Experimental Immunology, 2013, 174, 139-151.	1.1	43
39	Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation. Journal of Immunology, 2013, 190, 2252-2262.	0.4	260
40	The role of the palatine tonsils in the pathogenesis and treatment of psoriasis. British Journal of Dermatology, 2013, 168, 237-242.	1.4	46
41	Robust shifts in S100a9 expression with aging: A novel mechanism for chronic inflammation. Scientific Reports, 2013, 3, 1215.	1.6	96
42	Alteration of the EphA2/Ephrin-A Signaling Axis in Psoriatic Epidermis. Journal of Investigative Dermatology, 2013, 133, 712-722.	0.3	33
43	Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Human Molecular Genetics, 2013, 22, 1807-1815.	1.4	35
44	Modulation of Epidermal Transcription Circuits in Psoriasis: New Links between Inflammation and Hyperproliferation. PLoS ONE, 2013, 8, e79253.	1.1	49
45	Improvement of Psoriasis after Tonsillectomy Is Associated with a Decrease in the Frequency of Circulating T Cells That Recognize Streptococcal Determinants and Homologous Skin Determinants. Journal of Immunology, 2012, 188, 5160-5165.	0.4	97
46	Novel systemic drugs under investigation for the treatment of psoriasis. Journal of the American Academy of Dermatology, 2012, 67, 139-147.	0.6	45
47	Heterogeneity of Inflammatory and Cytokine Networks in Chronic Plaque Psoriasis. PLoS ONE, 2012, 7, e34594.	1.1	72
48	The anti-microbial peptide LL-37 modulates immune responses in the palatine tonsils where it is exclusively expressed by neutrophils and a subset of dendritic cells. Clinical Immunology, 2012, 142, 139-149.	1.4	13
49	Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of interleukin (IL)-19, IL-20 and IL-24. British Journal of Dermatology, 2012, 167, 92-102.	1.4	40
50	Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature. PLoS ONE, 2012, 7, e33204.	1.1	33
51	IL-1F5, -F6, -F8, and -F9: A Novel IL-1 Family Signaling System That Is Active in Psoriasis and Promotes Keratinocyte Antimicrobial Peptide Expression. Journal of Immunology, 2011, 186, 2613-2622.	0.4	282
52	Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis. PLoS ONE, 2011, 6, e18266.	1.1	160
53	EGFR and IL-1 Signaling Synergistically Promote Keratinocyte Antimicrobial Defenses in a Differentiation-Dependent Manner. Journal of Investigative Dermatology, 2011, 131, 329-337.	0.3	81
54	The Role of CD8 T Cells and Their Antigen Receptors in Psoriasis. Psoriasis Forum, 2010, 16a, 39-46.	0.1	0

#	Article	IF	CITATIONS
55	Assessment of the Psoriatic Transcriptome in a Large Sample: Additional Regulated Genes and Comparisons with In Vitro Models. Journal of Investigative Dermatology, 2010, 130, 1829-1840.	0.3	192
56	Evidence for Altered Wnt Signaling in Psoriatic Skin. Journal of Investigative Dermatology, 2010, 130, 1849-1859.	0.3	116
57	Metalloproteinase-Mediated, Context-Dependent Function of Amphiregulin and HB-EGF in Human Keratinocytes and Skin. Journal of Investigative Dermatology, 2010, 130, 295-304.	0.3	36
58	Molecular Dissection of Psoriasis: Integrating Genetics and Biology. Journal of Investigative Dermatology, 2010, 130, 1213-1226.	0.3	253
59	Transcriptional Profiles of Leukocyte Populations Provide a Tool for Interpreting Gene Expression Patterns Associated with High Fat Diet in Mice. PLoS ONE, 2010, 5, e11861.	1.1	16
60	Transgenic expression of S100A2 in hairless mouse skin enhances Cxcl13 mRNA in response to solar-simulated radiation. Archives of Dermatological Research, 2009, 301, 205-217.	1.1	10
61	Psoriasis – as an autoimmune disease caused by molecular mimicry. Trends in Immunology, 2009, 30, 494-501.	2.9	179
62	Isolation of Mononuclear Cells from Tonsillar Tissue. Current Protocols in Immunology, 2009, 86, Unit 7.8.	3.6	21
63	Current understanding of the genetic basis of psoriasis. Expert Review of Clinical Immunology, 2009, 5, 433-443.	1.3	11
64	Obesity in psoriasis: leptin and resistin as mediators of cutaneous inflammation. British Journal of Dermatology, 2008, 159, 342-350.	1.4	197
65	Induction of IL-17+ T Cell Trafficking and Development by IFN- \hat{l}^3 : Mechanism and Pathological Relevance in Psoriasis. Journal of Immunology, 2008, 181, 4733-4741.	0.4	433
66	Mouse Models of Psoriasis. Journal of Investigative Dermatology, 2007, 127, 1292-1308.	0.3	225
67	Narrowband–UVB irradiation decreases the production of pro-inflammatory cytokines by stimulated T cells. Archives of Dermatological Research, 2005, 297, 39-42.	1.1	78
68	The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clinical Immunology, 2005, 114, 154-163.	1.4	211
69	Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8+ T cells. Clinical and Experimental Immunology, 2004, 138, 83-93.	1.1	126
70	Immunopathogenic mechanisms in psoriasis. Clinical and Experimental Immunology, 2004, 135, 1-8.	1.1	323
71	Methotrexate markedly reduces the expression of vascular E-selectin, cutaneous lymphocyte-associated antigen and the numbers of mononuclear leucocytes in psoriatic skin. Experimental Dermatology, 2004, 13, 426-434.	1.4	58
72	Differential effects of interleukin 12 and interleukin 10 on superantigen-induced expression of cutaneous lymphocyte-associated antigen (CLA) and $\hat{l}\pm\hat{El}^2$ 7 integrin (CD103) by CD8+ T cells. Clinical lmmunology, 2004, 111, 119-125.	1.4	15