

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Access to Bridged Polycyclic Skeletons by Merging Oxidative C–H Annulation and Cascade [4 + 2] Cycloaddition. Organic Letters, 2022, 24, 121-126.	4.6	7
2	Suzuki Coupling of Activated Aryltriazenes for Practical Synthesis of Biaryls from Anilines. Advanced Synthesis and Catalysis, 2022, 364, 2438-2442.	4.3	5
3	Chemoselective Chan-Lam coupling by directly using copper powders via mechanochemical metal activation for catalysis. Molecular Catalysis, 2022, 528, 112472.	2.0	5
4	Mechanical metal activation for Ni-catalyzed, Mn-mediated cross-electrophile coupling between aryl and alkyl bromides. New Journal of Chemistry, 2021, 45, 11269-11274.	2.8	16
5	Highly efficient palladium-catalyzed cross-coupling of diarylborinic acids with arenediazoniums for practical diaryl synthesis. Tetrahedron Letters, 2020, 61, 151491.	1.4	5
6	Ball-milling enables highly selective solvent-free N-tert-butoxycarbonylation for activation of amides. Tetrahedron Letters, 2020, 61, 152140.	1.4	5
7	Nickel-catalyzed cross-coupling of <i>O</i> , <i>N</i> -chelated diarylborinates with aryl chlorides and mesylates. New Journal of Chemistry, 2019, 43, 1589-1596.	2.8	7
8	Highly efficient synthesis of aryl ketones by PEPPSI-palladium catalyzed acylative Suzuki coupling of amides with diarylborinic acids. Tetrahedron Letters, 2018, 59, 2299-2301.	1.4	19
9	Palladium-Catalyzed Room Temperature Acylative Cross-Coupling of Activated Amides with Trialkylboranes. Molecules, 2018, 23, 2412.	3.8	13
10	Development of a Telescoped Process for Preparation of N,O-Chelated Diarylborinates. Organic Process Research and Development, 2018, 22, 824-828.	2.7	9
11	Bifunctional Quaternary Ammonium Salts Catalyzed Stereoselective Conjugate Addition of Oxindoles to Electron-Deficient β-Haloalkenes. Journal of Organic Chemistry, 2017, 82, 4840-4850.	3.2	20
12	Palladium-catalyzed cross-coupling of aryl chlorides with O, N-chelate stabilized diarylborinates. Journal of Organometallic Chemistry, 2017, 842, 54-58.	1.8	8
13	A Sequential Suzuki Coupling Approach to Unsymmetrical Aryl <i>s</i> â€Triazines from Cyanuric Chloride. Advanced Synthesis and Catalysis, 2017, 359, 2514-2519.	4.3	19
14	Base-assisted, copper-catalyzed N-arylation of (benz)imidazoles and amines with diarylborinic acids. Tetrahedron, 2017, 73, 6906-6913.	1.9	11
15	Palladium-Catalyzed Room-Temperature Acylative Suzuki Coupling of High-Order Aryl Borons with Carboxylic Acids. Journal of Organic Chemistry, 2016, 81, 4364-4370.	3.2	31
16	Preparation of dendritic–linear polyether-modified silica sol and its application in coatings. Journal of Coatings Technology Research, 2016, 13, 963-971.	2.5	0
17	Dipeptide-derived multifunctional phosphonium salt as a catalyst to synthesize highly functionalized chiral cyclopentanes. Tetrahedron, 2016, 72, 4141-4150.	1.9	20
18	Acylative Suzuki coupling of amides: acyl-nitrogen activation via synergy of independently modifiable activating groups. Chemical Communications, 2015, 51, 5089-5092.	4.1	195

Gang Zou

#	Article	IF	CITATIONS
19	Palladium-catalyzed acylative cross-coupling of amides with diarylborinic acids and sodium tetraarylborates. Journal of Organometallic Chemistry, 2015, 794, 136-145.	1.8	64
20	Primary-secondary diamines catalyzed Michael reaction to generate chiral fluorinated quaternary carbon centers. Tetrahedron, 2015, 71, 4137-4144.	1.9	11
21	<i>N</i> â€Heterocyclic carbene/phosphite synergistically assisted Pd/Câ€catalyzed Suzuki coupling of aryl chlorides. Applied Organometallic Chemistry, 2014, 28, 54-60.	3.5	23
22	Rutheniumâ€Catalyzed Alkenylation of Arenes with Alkynes or Alkenes by 1,2,3â€Triazoleâ€Directed C–H Activation. European Journal of Organic Chemistry, 2014, 2014, 7878-7888.	2.4	42
23	Rhodium(III)â€Catalyzed, CH Activated Annulation to Form Isocoumarins and <i>α</i> â€Pyrones using the ON Bond as an Internal Oxidant. Advanced Synthesis and Catalysis, 2014, 356, 1496-1500.	4.3	58
24	Nickel-Catalyzed Cross-Coupling of Diarylborinic Acids with Aryl Chlorides. ACS Catalysis, 2014, 4, 379-385.	11.2	30
25	N-Heterocyclic Carbene-Assisted, Bis(phosphine)nickel-Catalyzed Cross-Couplings of Diarylborinic Acids with Aryl Chlorides, Tosylates, and Sulfamates. Journal of Organic Chemistry, 2014, 79, 7132-7140.	3.2	39
26	Highly efficient nickel/phosphine catalyzed cross-couplings of diarylborinic acids with aryl tosylates and sulfamates. Science China Chemistry, 2014, 57, 1126-1131.	8.2	6
27	Asymmetric Intramolecular Oxa-Michael Reactions to Tetrahydrofurans/2 <i>H</i> -Pyrans Catalyzed by Primary–Secondary Diamines. ACS Catalysis, 2013, 3, 1356-1359.	11.2	56
28	Synthesis of Diarylmethanes via Metal-Free Reductive Cross-Coupling of Diarylborinic Acids with Tosyl Hydrazones. Journal of Organic Chemistry, 2012, 77, 10991-10995.	3.2	45
29	Highly Selective Fluorescence Turnâ€on Chemosensor Based on Naphthalimide Derivatives for Detection of Trivalent Chromium Ions. Chinese Journal of Chemistry, 2012, 30, 2844-2848.	4.9	10
30	Cross-Coupling of Diarylborinic Acids and Anhydrides with Arylhalides Catalyzed by a Phosphite/N-Heterocyclic Carbene Co-supported Palladium Catalyst System. Journal of Organic Chemistry, 2012, 77, 7572-7578.	3.2	50
31	Tunable protic ionic liquids as solvent-catalysts for improved synthesis of multiply substituted 1,2,4-triazoles from oxadiazoles and organoamines. Tetrahedron, 2012, 68, 4813-4819.	1.9	27
32	Highly Enantioselective Epoxidation of α,βâ€Unsaturated Ketones Catalyzed by Primaryâ€Secondary Diamines. Advanced Synthesis and Catalysis, 2011, 353, 3129-3133.	4.3	25
33	Magnesium, zinc, and calcium complexes based on tridentate nitrogen ligands: Syntheses, structures, and catalytic activities to the ring opening polymerization of rac-lactide. Journal of Organometallic Chemistry, 2010, 695, 1155-1162.	1.8	75
34	Hemilabile oordinated copper promoted amination of aryl halides with ammonia in aqueous ethylene glycol under atmosphere pressure. Applied Organometallic Chemistry, 2009, 23, 150-153.	3.5	31
35	Baylis–Hillman reaction promoted by a recyclable protic-ionic-liquid solvent–catalyst system: DABCO–AcOH–H2O. Tetrahedron, 2009, 65, 9086-9090.	1.9	22
36	Heck-type coupling vs. conjugate addition in phosphine–rhodium catalyzed reactions of aryl boronic acids with α,β-unsaturated carbonyl compounds: a systematic investigation. Dalton Transactions, 2007, , 3055-3064.	3.3	35

Gang Zou

#	Article	IF	CITATIONS
37	Heck reaction catalysed by palladium supported with an electron-rich benzimidazolylidene generated in situ: remarkable ligand electronic effects and controllable mono- and di-arylation. New Journal of Chemistry, 2006, 30, 803.	2.8	51
38	Palladium–benzimidazolium salt catalyst systems for Suzuki coupling: development of a practical and highly active palladium catalyst system for coupling of aromatic halides with arylboronic acids. Tetrahedron, 2005, 61, 9783-9790.	1.9	69
39	An unprecedented rhodium-catalysed self-conjugate reduction, cross-coupling tandem reaction of cinnamaldehydes with arylboronic acids. Chemical Communications, 2004, , 1192.	4.1	22
40	Homocoupling of aryl iodides catalyzed by cyclopalladated complexes of tertiary arylamines. Chinese Journal of Chemistry, 2004, 22, 419-421.	4.9	11
41	Developing an ionic medium for ligandless-palladium-catalysed Suzuki and Heck couplings. Journal of Molecular Catalysis A, 2003, 206, 193-198.	4.8	59
42	Rhodium-catalyzed Heck-type reaction of arylboronic acids with α,β-unsaturated esters: tuning β-hydrogen elimination vs. hydrolysis of alkylrhodium species. Chemical Communications, 2003, , 2438-2439.	4.1	57
43	Heck reaction of iodoarenes with methyl acrylate catalyzed by cyclopalladated complexes of tertiary arylamines immobilized in ionic liquid [Bmim] ⁺ BF ₄ ^{â^'} . Chinese Journal of Chemistry, 2003, 21, 1111-1113.	4.9	11