
Eng-Ang Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3024198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Frontiers in Pharmacology, 2020, 11, 580428.	1.6	14
2	Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histology and Histopathology, 2020, 35, 1229-1250.	0.5	7
3	Retinal microglia – A key player in healthy and diseased retina. Progress in Neurobiology, 2019, 173, 18-40.	2.8	134
4	Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Current Medicinal Chemistry, 2019, 26, 4749-4774.	1.2	33
5	Herbal Compounds with Special Reference to Gastrodin as Potential Therapeutic Agents for Microglia Mediated Neuroinflammation. Current Medicinal Chemistry, 2019, 25, 5958-5974.	1.2	20
6	Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Current Pharmaceutical Design, 2019, 25, 2375-2393.	0.9	16
7	Neurotrophinâ€3 released from implant of tissueâ€engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. Journal of Biomedical Materials Research - Part A, 2018, 106, 2158-2170.	2.1	37
8	Peripheral Nerveâ€Derived Matrix Hydrogel Promotes Remyelination and Inhibits Synapse Formation. Advanced Functional Materials, 2018, 28, 1705739.	7.8	74
9	Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials, 2018, 160, 37-55.	5.7	35
10	Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment. Oncotarget, 2018, 9, 24950-24969.	0.8	17
11	Hypoxia and myelination deficits in the developing brain. International Journal of Developmental Neuroscience, 2018, 70, 3-11.	0.7	18
12	Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials, 2018, 181, 15-34.	5.7	51
13	Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opinion on Therapeutic Targets, 2018, 22, 765-781.	1.5	47
14	Effects of Electroacupuncture and the Retinoid X Receptor (Rxr) Signalling Pathway on Oligodendrocyte Differentiation in the Demyelinated Spinal Cord of Rats. Acupuncture in Medicine, 2017, 35, 122-132.	0.4	11
15	Transitory cystic cavities in the developing mammalian brain – normal or anomalous?. Journal of Anatomy, 2017, 230, 197-202.	0.9	6
16	Biology of Microglia in the Developing Brain. Journal of Neuropathology and Experimental Neurology, 2017, 76, 736-753.	0.9	95
17	Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats. Neural Plasticity, 2017, 2017, 1-11.	1.0	28
18	Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling. PLoS ONE, 2017, 12, e0186764.	1.1	44

ENG-ANG LING

#	Article	IF	CITATIONS
19	The circumventricular organs. Histology and Histopathology, 2017, 32, 879-892.	0.5	53
20	Scutellarin Attenuates Microglia-Mediated Neuroinflammation and Promotes Astrogliosis in Cerebral Ischemia - A Therapeutic Consideration. Current Medicinal Chemistry, 2017, 24, 718-727.	1.2	23
21	Melatonin Suppresses Toll Like Receptor 4-Dependent Caspase-3 Signaling Activation Coupled with Reduced Production of Proinflammatory Mediators in Hypoxic Microglia. PLoS ONE, 2016, 11, e0166010.	1.1	25
22	Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. NeuroMolecular Medicine, 2016, 18, 264-273.	1.8	46
23	Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials, 2016, 109, 40-54.	5.7	55
24	Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation <i>in vitro</i> and promotes nerve fiber regeneration in transected spinal cord injury. Journal of Biomedical Materials Research - Part A, 2016, 104, 1902-1911.	2.1	41
25	Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochemistry International, 2016, 97, 154-171.	1.9	28
26	The Choroid Plexus in Healthy and Diseased Brain. Journal of Neuropathology and Experimental Neurology, 2016, 75, 198-213.	0.9	110
27	Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 2016, 83, 233-248.	5.7	103
28	Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress. Molecular Neurobiology, 2016, 53, 4713-4727.	1.9	18
29	Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neuroscience, 2015, 16, 84.	0.8	36
30	Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Research and Therapy, 2015, 6, 105.	2.4	38
31	Protective effects of ginseng on neurological disorders. Frontiers in Aging Neuroscience, 2015, 7, 129.	1.7	161
32	Cholera Toxin B Subunit Shows Transneuronal Tracing after Injection in an Injured Sciatic Nerve. PLoS ONE, 2015, 10, e0144030.	1.1	19
33	Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. Journal of Neuroinflammation, 2015, 12, 11.	3.1	70
34	Role of sphingomyelinases in neurological disorders. Expert Opinion on Therapeutic Targets, 2015, 19, 1725-1742.	1.5	35
35	Combination of Electroacupuncture and Grafted Mesenchymal Stem Cells Overexpressing TrkC Improves Remyelination and Function in Demyelinated Spinal Cord of Rats. Scientific Reports, 2015, 5, 9133.	1.6	34
36	Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials, 2015, 53, 184-201.	5.7	85

ENG-ANG LING

#	Article	IF	CITATIONS
37	Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro. Journal of Neuroinflammation, 2014, 11, 148.	3.1	19
38	Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway. Neuropharmacology, 2014, 77, 428-440.	2.0	18
39	Runx1t1 (Runt-Related Transcription Factor 1; Translocated to, 1) Epigenetically Regulates the Proliferation and Nitric Oxide Production of Microglia. PLoS ONE, 2014, 9, e89326.	1.1	18
40	Therapeutic implications of melatonin in cerebral edema. Histology and Histopathology, 2014, 29, 1525-38.	0.5	8
41	Neuronanomedicine - (Part II). Current Medicinal Chemistry, 2014, , .	1.2	0
42	Roles of Activated Microglia in Hypoxia Induced Neuroinflammation in the Developing Brain and the Retina. Journal of NeuroImmune Pharmacology, 2013, 8, 66-78.	2.1	160
43	Notch-1 Signaling Regulates Microglia Activation via NF-κB Pathway after Hypoxic Exposure In Vivo and In Vitro. PLoS ONE, 2013, 8, e78439.	1.1	99
44	Notch Signaling in the Central Nervous System with Special Reference to its Expression in Microglia. CNS and Neurological Disorders - Drug Targets, 2013, 12, 807-814.	0.8	20
45	Expression of cyclooxygenaseâ€2 and microsomal prostaglandinâ€E synthase in amoeboid microglial cells in the developing brain and effects of cyclooxygenaseâ€2 neutralization on BVâ€2 microglial cells. Journal of Neuroscience Research, 2010, 88, 1577-1594.	1.3	11
46	Expression of Notchâ€1 receptor and its ligands Jaggedâ€1 and Deltaâ€1 in amoeboid microglia in postnatal rat brain and murine BVâ€2 cells. Clia, 2008, 56, 1224-1237.	2.5	68
47	Microglial Activation and its Implications in the Brain Diseases. Current Medicinal Chemistry, 2007, 14, 1189-1197.	1.2	854
48	The Pineal Gland and Beneficial Effects of Melatonin. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2007, 1, 136-141.	0.7	0
49	2′, 3′-cyclic nucleotide 3′-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord. Journal of Neuroscience Research, 2007, 85, 116-130.	1.3	11
50	Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. Journal of Neurochemistry, 2007, 102, 667-678.	2.1	112
51	Transient expression of endothelins in the amoeboid microglial cells in the developing rat brain. Glia, 2006, 54, 513-525.	2.5	13
52	Response of amoeboid microglia/brain macrophages in fetal rat brain exposed to a teratogen. Journal of Neuroscience Research, 2001, 64, 79-93.	1.3	19
53	Origin of microglia. Microscopy Research and Technique, 2001, 54, 2-9.	1.2	140
54	Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Visual Neuroscience, 2000, 17, 463-471.	0.5	240

ENG-ANG LING

#	Article	IF	CITATIONS
55	Labelling of retinal microglial cells following an intravenous injection of a fluorescent dye into rats of different ages. Journal of Anatomy, 2000, 196, 173-179.	0.9	13
56	Neuronal nitric oxide synthase in the neural pathways of the urinary bladder. Journal of Anatomy, 1999, 194, 481-496.	0.9	15
57	Colocalization of nitric oxide synthase and some neurotransmitters in the intramural ganglia of the guinea pig urinary bladder. Journal of Comparative Neurology, 1998, 394, 496-505.	0.9	34
58	Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microscopy Research and Technique, 1998, 41, 43-56.	1.2	103
59	Sensory nerve endings in monkey hip joint capsule: A morphological investigation. , 1998, 11, 81-85.		23
60	Ultrastructural localization of acetylcholinesterase and choline acetyltransferase in oligodendrocytes, glioblasts and vascular endothelial cells in the external cuneate nucleus of the gerbil. Anatomy and Embryology, 1996, 194, 177-85.	1.5	21
61	NADPH-diaphorase activity in the nodose ganglion of normal and vagotomized guinea-pigs. Cell and Tissue Research, 1996, 285, 141-147.	1.5	14
62	Ultrastructural study of external cuneothalamic neurons and their synaptic relationships with primary afferents in the gerbil. Journal of Comparative Neurology, 1996, 366, 406-415.	0.9	7
63	A qualitative and quantitative study of the glial cells in normal and athymic mice. Glia, 1995, 15, 11-21.	2.5	7
64	A comparative Mac-1 immunocytochemical and lectin histochemical study of microglial cells in the normal and athymic mice. Glia, 1994, 12, 44-51.	2.5	28
65	The origin and nature of ramified and amoeboid microglia: A historical review and current concepts. Glia, 1993, 7, 9-18.	2.5	640
66	Amoeboid and ramified microglia: Their interrelationship and response to brain injury. Glia, 1992, 6, 39-47.	2.5	132
67	Vagus Nerve and Spinal Cord Projecting Neurons Demonstrated By Horseradish Peroxidase and Different Fluorescent Dyes. International Journal of Neuroscience, 1991, 57, 61-72.	0.8	2
68	An electron microscopic study of the nodose (inferior vagal) ganglion cells in the monkey. Journal of Neurocytology, 1988, 17, 845-857.	1.6	32
69	The Origin and Nature of Microglia. Advances in Cellular Neurobiology, 1981, 2, 33-82.	1.0	91