
Hisahiro Sasabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3023534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of high performance OLEDs for general lighting. Journal of Materials Chemistry C, 2013, 1, 1699.	2.7	614
2	Highâ€Efficiency Blue and White Organic Lightâ€Emitting Devices Incorporating a Blue Iridium Carbene Complex. Advanced Materials, 2010, 22, 5003-5007.	11.1	506
3	Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. Chemistry of Materials, 2008, 20, 1691-1693.	3.2	491
4	Multifunctional Materials in High-Performance OLEDs: Challenges for Solid-State Lighting. Chemistry of Materials, 2011, 23, 621-630.	3.2	486
5	Ultra High Efficiency Green Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2007, 46, L10-L12.	0.8	351
6	Lowâ€Drivingâ€Voltage Blue Phosphorescent Organic Lightâ€Emitting Devices with External Quantum Efficiency of 30%. Advanced Materials, 2014, 26, 5062-5066.	11.1	308
7	Highly Efficient Organic Blueâ€and White‣ightâ€Emitting Devices Having a Carrier―and Excitonâ€Confining Structure for Reduced Efficiency Rollâ€Off. Advanced Materials, 2008, 20, 4189-4194.	11.1	300
8	Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Communications, 2014, 5, 5756.	5.8	278
9	Bisanthraceneâ€Based Donor–Acceptorâ€type Lightâ€Emitting Dopants: Highly Efficient Deepâ€Blue Emission Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2014, 24, 2064-2071.	in 7.8	278
10	A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Science and Applications, 2013, 2, e74-e74.	7.7	259
11	Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chemistry of Materials, 2008, 20, 5951-5953.	3.2	242
12	Recent Progress in Phosphorescent Organic Lightâ€Emitting Devices. European Journal of Organic Chemistry, 2013, 2013, 7653-7663.	1.2	242
13	Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â^'1} . Advanced Materials, 2016, 28, 2638-2643.	11.1	225
14	Highâ€Performance Blue Phosphorescent OLEDs Using Energy Transfer from Exciplex. Advanced Materials, 2014, 26, 1612-1616.	11.1	224
15	Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 14517-14534.	5.2	201
16	3,3′â€Bicarbazoleâ€Based Host Materials for Highâ€Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage. Advanced Materials, 2012, 24, 3212-3217.	11.1	194
17	Tuning Energy Levels of Electronâ€Transport Materials by Nitrogen Orientation for Electrophosphorescent Devices with an â€ïIdeal' Operating Voltage. Advanced Materials, 2010, 22, 3311-3316.	11.1	166
18	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	3.2	164

#	Article	IF	CITATIONS
19	Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs. Journal of Materials Chemistry C, 2016, 4, 2274-2278.	2.7	162
20	Extremely Low Operating Voltage Green Phosphorescent Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2013, 23, 5550-5555.	7.8	157
21	Coâ€Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency. Advanced Materials, 2012, 24, 2768-2773.	11.1	149
22	Molecular Stacking Induced by Intermolecular C–H···N Hydrogen Bonds Leading to High Carrier Mobility in Vacuumâ€Đeposited Organic Films. Advanced Functional Materials, 2011, 21, 1375-1382.	7.8	144
23	Ultra-high efficiency by multiple emission from stacked organic light-emitting devices. Organic Electronics, 2011, 12, 710-715.	1.4	143
24	Optimizing the Charge Balance of Fluorescent Organic Lightâ€Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit. Advanced Materials, 2012, 24, 1765-1770.	11.1	141
25	Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters. Advanced Functional Materials, 2011, 21, 336-342.	7.8	139
26	2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chemical Communications, 2008, , 5821.	2.2	130
27	High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(iii) complex with fluorinated bipyridyl ligands. Journal of Materials Chemistry C, 2013, 1, 1070.	2.7	129
28	Novel Four-Pyridylbenzene-Armed Biphenyls as Electron-Transport Materials for Phosphorescent OLEDs. Organic Letters, 2008, 10, 941-944.	2.4	125
29	A <i>m</i> -Terphenyl-Modifed Sulfone Derivative as a Host Material for High-Efficiency Blue and Green Phosphorescent OLEDs. Chemistry of Materials, 2012, 24, 1404-1406.	3.2	125
30	A Series of Squaraine Dyes: Effects of Side Chain and the Number of Hydroxyl Groups on Material Properties and Photovoltaic Performance. Chemistry of Materials, 2014, 26, 1356-1364.	3.2	119
31	Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chemical Communications, 2015, 51, 16353-16356.	2.2	112
32	Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Rollâ€Off at High Brightness in Blue Phosphorescent OLEDs. Advanced Optical Materials, 2016, 4, 86-90.	3.6	109
33	J-aggregation of a squaraine dye and its application in organic photovoltaic cells. Journal of Materials Chemistry C, 2013, 1, 6547.	2.7	91
34	Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission. ACS Applied Materials & Interfaces, 2017, 9, 4742-4749.	4.0	91
35	High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2011, 12, 843-850.	1.4	86
36	Instant Lowâ€Temperature Crossâ€Linking of Poly(<i>N</i> â€vinylcarbazole) for Solutionâ€Processed Multilayer Blue Phosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2014, 26, 7543-7546.	11.1	85

#	Article	IF	CITATIONS
37	m-Terphenyl-modified carbazole host material for highly efficient blue and green PHOLEDS. Chemical Communications, 2009, , 6655.	2.2	83
38	Review of Molecular Engineering for Horizontal Molecular Orientation in Organic Light-Emitting Devices. Bulletin of the Chemical Society of Japan, 2019, 92, 716-728.	2.0	82
39	Photoinduced Electron-Transfer Processes between [C60]Fullerene and Triphenylamine Moieties Tethered by Rotaxane Structures. Through-Space Electron Transfer via Excited Triplet States of [60]Fullerene. Journal of Physical Chemistry A, 2004, 108, 5145-5155.	1.1	73
40	Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidineâ€Based Emitter. Advanced Optical Materials, 2017, 5, 1600843.	3.6	73
41	Highly efficient, deep-red organic light-emitting devices using energy transfer from exciplexes. Journal of Materials Chemistry C, 2017, 5, 527-530.	2.7	72
42	Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices. Journal of Photonics for Energy, 2018, 8, 1.	0.8	70
43	Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14, 14661.	1.3	69
44	Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807556.	7.8	68
45	Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. Organic Electronics, 2012, 13, 2615-2619.	1.4	66
46	A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of Materials Chemistry A, 2018, 6, 13918-13924.	5.2	62
47	Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds. Advanced Materials, 2019, 31, e1808300.	11.1	62
48	Solution-Processed Inorganic–Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices. ACS Applied Materials & Interfaces, 2012, 4, 6104-6108.	4.0	61
49	Low-Band-Gap Small Molecule for Efficient Organic Solar Cells with a Low Energy Loss below 0.6 eV and a High Open-Circuit Voltage of over 0.9 V. ACS Energy Letters, 2017, 2, 2021-2025.	8.8	61
50	Facile synthesis of multi-resonance ultra-pure-green TADF emitters based on bridged diarylamine derivatives for efficient OLEDs with narrow emission. Journal of Materials Chemistry C, 2021, 9, 8308-8313.	2.7	59
51	Synthesis of [2]- and [3]Rotaxanes by an End-Capping Approach Utilizing Urethane Formation. Bulletin of the Chemical Society of Japan, 2004, 77, 179-185.	2.0	57
52	End-Capping of a Pseudorotaxane via Dielsâ^'Alder Reaction for the Construction of C60-Terminated [2]Rotaxanes. Organic Letters, 2004, 6, 3957-3960.	2.4	55
53	Excimer-emitting single molecules with stacked ï€-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs. Journal of Materials Chemistry C, 2013, 1, 3871.	2.7	55
54	Thermally cross-linkable host materials for enabling solution-processed multilayer stacks in organic light-emitting devices. Organic Electronics, 2013, 14, 1614-1620.	1.4	54

#	Article	IF	CITATIONS
55	High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synthetic Metals, 2015, 202, 165-168.	2.1	54
56	A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices. Chemical Communications, 2012, 48, 8434.	2.2	53
57	Optical and electrical properties of a squaraine dye in photovoltaic cells. Applied Physics Letters, 2012, 101, 083904.	1.5	51
58	A Series of Imidazo[1,2â€f]phenanthridineâ€Based Skyâ€Blue TADF Emitters Realizing EQE of over 20%. Advanced Optical Materials, 2019, 7, 1801282.	3.6	47
59	A Series of Dibenzofuranâ€Based nâ€Type Exciplex Host Partners Realizing Highâ€Efficiency and Stable Deepâ€Red Phosphorescent OLEDs. Chemistry - A European Journal, 2019, 25, 7308-7314.	1.7	45
60	An α-Carboline-containing Host Material for High-efficiency Blue and Green Phosphorescent OLEDs. Chemistry Letters, 2011, 40, 306-308.	0.7	44
61	Synthesis, properties, and OLED characteristics of 2,2′-bipyridine-based electron-transport materials: the synergistic effect of molecular shape anisotropy and a weak hydrogen-bonding network on molecular orientation. Journal of Materials Chemistry C, 2016, 4, 3699-3704.	2.7	43
62	Solution-processed organic light-emitting devices with two polymer light-emitting units connected in series by a charge-generation layer. Journal of Materials Chemistry, 2012, 22, 22769.	6.7	41
63	Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole–dipole interactions as a high performance small molecular organic solar cells material. Journal of Materials Chemistry A, 2015, 3, 17704-17712.	5.2	40
64	Asymmetrical Squaraines Bearing Fluorine-Substituted Indoline Moieties for High-Performance Solution-Processed Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 13675-13684.	4.0	39
65	Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices. Organic Electronics, 2012, 13, 2235-2242.	1.4	37
66	A Novel Sterically Bulky Hole Transporter to Remarkably Improve the Lifetime of Thermally Activated Delayed Fluorescent OLEDs at High Brightness. Chemistry - A European Journal, 2018, 24, 4590-4596.	1.7	36
67	High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination. Applied Physics Letters, 2013, 102, 153308.	1.5	34
68	Efficient synthesis of [2]- and higher order rotaxanes via the transition metal-catalyzed hydrosilylation of alkyne. Tetrahedron Letters, 2005, 46, 3851-3853.	0.7	33
69	Simultaneous Manipulation of Intramolecular and Intermolecular Hydrogen Bonds in nâ€Type Organic Semiconductor Layers: Realization of Horizontal Orientation in OLEDs. Advanced Optical Materials, 2015, 3, 769-773.	3.6	33
70	Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances, 2014, 4, 42804-42807.	1.7	31
71	A series of fluorinated phenylpyridine-based electron-transporters for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 1104-1110.	2.7	31
72	An effective π-extended squaraine for solution-processed organic solar cells with high efficiency. Journal of Materials Chemistry A, 2016, 4, 18931-18941.	5.2	30

5

#	Article	IF	CITATIONS
73	Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters. Journal of Materials Chemistry C, 2020, 8, 7200-7210.	2.7	30
74	Unlocking the Potential of Pyrimidine Conjugate Emitters to Realize Highâ€Performance Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2017, 5, 1600675.	3.6	29
75	Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26465-26472.	4.0	28
76	Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electronâ€Transport Materials. Advanced Optical Materials, 2018, 6, 1800376.	3.6	28
77	Synthesis of poly[2]rotaxane by Sonogashira polycondensation. Journal of Polymer Science Part A, 2007, 45, 4154-4160.	2.5	26
78	Fundamental functions of peripheral and core pyridine rings in a series of bis-terpyridine derivatives for high-performance organic light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 8980-8988.	2.7	26
79	The effect of processing solvent dependent film aggregation on the photovoltaic performance of squaraine:PC71BM bulk heterojunction solar cells. Organic Electronics, 2017, 51, 62-69.	1.4	26
80	Highly Luminescent π onjugated Terpyridine Derivatives Exhibiting Thermally Activated Delayed Fluorescence. Chemistry - A European Journal, 2017, 23, 114-119.	1.7	26
81	High Power Efficiency Blueâ€ŧoâ€Green Organic Lightâ€Emitting Diodes Using Isonicotinonitrileâ€Based Fluorescent Emitters. Chemistry - an Asian Journal, 2017, 12, 648-654.	1.7	25
82	Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5797-5806.	5.2	25
83	Highly Efficient Green Phosphorescent OLED Based on Pyridine-containing Starburst Electron-transporting Materials. Chemistry Letters, 2010, 39, 140-141.	0.7	24
84	fac-Tris(2-phenylpyridine)iridium (III)s, covalently surrounded by six bulky host dendrons, for a highly efficient solution-processed organic light emitting device. Organic Electronics, 2011, 12, 2103-2110.	1.4	24
85	Molecular Orientations of Delayed Fluorescent Emitters in a Series of Carbazole-Based Host Materials. Frontiers in Chemistry, 2020, 8, 427.	1.8	24
86	Axle charge effects on photoinduced electron transfer processes in rotaxanes containing porphyrin and [60]fullerene. Physical Chemistry Chemical Physics, 2009, 11, 10908.	1.3	23
87	Photoinduced electron transfer processes of fullerene rotaxanes containing various electron-donors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11, 73-92.	5.6	23
88	Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24, 484007.	1.3	23
89	Introduction of Twisted Backbone: A New Strategy to Achieve Efficient Blue Fluorescence Emitter with Delayed Emission. Advanced Optical Materials, 2017, 5, 1700334.	3.6	23
90	Photoinduced Electron Transfer Processes in Rotaxanes Containing [60]Fullerene and Ferrocene: Effect of Axle Charge on Light-Induced Molecular Motion. Australian Journal of Chemistry, 2006, 59, 186.	0.5	22

#	Article	IF	CITATIONS
91	A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192, 10-14.	2.1	22
92	Axle Length Effect on Photoinduced Electron Transfer in Triad Rotaxane with Porphyrin, [60]Fullerene, and Triphenylamine. Journal of Physical Chemistry A, 2010, 114, 5242-5250.	1.1	21
93	High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Applied Physics Letters, 2015, 106, 053305.	1.5	21
94	Photoinduced electron transfer processes in three component rotaxanes with porphyrins, [60]fullerene and triphenylamine. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1346-1359.	0.4	20
95	Diastereotopic relationship between planar and central chiralities in the formation of Ru(η3-allyl)(CO)(PPh3)(L–Lâ€2) complexes. Inorganic Chemistry Communication, 2003, 6, 1140-1143.	1.8	19
96	Synthesis of [60]fullerene-functionalized rotaxanes. Tetrahedron, 2006, 62, 1988-1997.	1.0	19
97	Effect of substituents in a series of carbazole-based host-materials toward high-efficiency carbene-based blue OLEDs. Journal of Materials Chemistry C, 2016, 4, 9476-9481.	2.7	19
98	Preparation of Ru(η3-2-alkenylallyl)(CO)Cl(PPh3)2 complexes via carbometallation of allenes with alkenyl ruthenium complexes. Inorganic Chemistry Communication, 2002, 5, 177-180.	1.8	18
99	Photoinduced electron and energy transfer processes in rotaxanes containing zinc porphyrin as pendant and [60]fullerene and ferrocene as axle ends. Journal of Porphyrins and Phthalocyanines, 2005, 09, 724-734.	0.4	18
100	Rotaxane Synthesized by End-capping via Hydroruthenation of Axle Terminal Acetylene and Its Derivation to η3-Allylruthenium Complex-containing Rotaxane. Chemistry Letters, 2006, 35, 212-213.	0.7	18
101	Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry. Advanced Materials Interfaces, 2014, 1, 1400097.	1.9	18
102	Ï€â€Extended Carbazole Derivatives as Host Materials for Highly Efficient and Longâ€Life Green Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2021, 27, 4971-4976.	1.7	18
103	Design and construction of photoinduced electron transfer systems based on [60]fullerene and porphyrin-containing [2]rotaxanes. Journal of Porphyrins and Phthalocyanines, 2007, 11, 334-341.	0.4	17
104	Unique Solidâ€State Emission Behavior of Aromatic Difluoroboronated βâ€Diketones as an Emitter in Organic Lightâ€Emitting Devices. Chemistry - an Asian Journal, 2017, 12, 2299-2303.	1.7	17
105	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	0.8	16
106	A sky blue thermally activated delayed fluorescence emitter to achieve efficient white light emission through in situ metal complex formation. Journal of Materials Chemistry C, 2019, 7, 3146-3149.	2.7	16
107	Esterification of Indoline-Based Small-Molecule Donors for Efficient Co-evaporated Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14785-14794.	1.5	15
108	Lithium Phenolate Complexes with a Pyridineâ€Containing Polymer for Solutionâ€Processable Electron Injection Layers in PLEDs. Advanced Functional Materials, 2014, 24, 6038-6045.	7.8	15

#	Article	IF	CITATIONS
109	Improved operational lifetime of deep-red phosphorescent organic light-emitting diodes using a benzothienobenzothiophene (BTBT)-based p-type host material. Journal of Materials Chemistry C, 2021, 9, 1215-1220.	2.7	15
110	A multifunctional hole-transporter for high-performance TADF OLEDs and clarification of factors governing the transport property by multiscale simulation. Journal of Materials Chemistry C, 2022, 10, 8694-8701.	2.7	15
111	Multilayered Organic Light-Emitting Devices by Solution-Process. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 403-410.	0.1	14
112	Phenanthroline Derivatives for Electron-transport Layer in Organic Light-emitting Devices. Chemistry Letters, 2009, 38, 712-713.	0.7	13
113	Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Organic Electronics, 2016, 32, 179-186.	1.4	13
114	Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Advances, 2016, 6, 1877-1884.	1.7	12
115	Roomâ€Temperature Phosphorescence from a Series of 3â€Pyridylcarbazole Derivatives. Chemistry - A European Journal, 2019, 25, 16294-16300.	1.7	12
116	Facile Routes to Ru(η3-Allyl)(NO)(PPh3)2Complexes via Hydrometallation of RuH(NO)(PPh3)3to 1,3-Butadienes and Allenes. Chemistry Letters, 2000, 29, 1058-1059.	0.7	11
117	Novel Blue Exciplex Comprising Acridine and Sulfone Derivatives as a Host Material for High-efficiency Blue Phosphorescent OLEDs. Chemistry Letters, 2016, 45, 283-285.	0.7	11
118	Comparison of the Solution and Vacuum-Processed Squaraine:Fullerene Small-Molecule Bulk Heterojunction Solar Cells. Frontiers in Chemistry, 2018, 6, 412.	1.8	11
119	<i>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	2.0	11
120	Asymmetric Spirobiacridineâ€based Delayed Fluorescence Emitters for Highâ€performance Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2021, 27, 10869-10874.	1.7	11
121	Extremely High Power Efficiency Solutionâ€Processed Orangeâ€Red TADF OLEDs via a Synergistic Strategy of Molecular and Device Engineering. Advanced Optical Materials, 2022, 10, .	3.6	11
122	Novel Series of Mononuclear Aluminum Complexes for Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices. Angewandte Chemie - International Edition, 2021, 60, 6036-6041.	7.2	10
123	Highly stable and efficient deep-red phosphorescent organic light-emitting devices using a phenanthroline derivative as an n-type exciplex host partner. Journal of Materials Chemistry C, 2022, 10, 2073-2079.	2.7	10
124	A Donor–Acceptor-type Host Material for Solution-processed Phosphorescent Organic Light-emitting Devices Showing High Efficiency. Chemistry Letters, 2014, 43, 1935-1936.	0.7	9
125	A novel π-D1-A-D2 type low bandgap squaraine dye for efficient small molecular organic solar cells. Dyes and Pigments, 2019, 163, 564-572.	2.0	9
126	9,10-Bis(bipyridyl, pyridylphenyl, phenylpyridyl, and biphenyl)anthracenes Combining High Electron Transport and Injection, Efficiency and Stability in Fluorescent Organic Light-emitting Devices. Chemistry Letters, 2011, 40, 1092-1094.	0.7	8

#	Article	IF	CITATIONS
127	Rubrene-based interfacial engineering toward enhanced performance in inverted polymer solar cells. Organic Electronics, 2017, 50, 191-197.	1.4	8
128	A Series of Lithium Pyridyl Phenolate Complexes with a Pendant Pyridyl Group for Electron-Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40541-40548.	4.0	8
129	Four Dibenzofuranâ€Terminated Highâ€Tripletâ€Energy Hole Transporters for Highâ€Efficiency and Longâ€Life Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2022, 28, .	1.7	7
130	Electron Injection and Transport Properties of Phenazine Compounds with Fused Rings. Japanese Journal of Applied Physics, 2010, 49, 01AB11.	0.8	6
131	Current Status of OLED Material and Process Technologies for Display and Lighting. , 2018, , .		5
132	Chrysene-based Electron-transporters Realizing Highly Efficient and Stable Phosphorescent OLEDs. Chemistry Letters, 2019, 48, 457-460.	0.7	5
133	Novel Series of Mononuclear Aluminum Complexes for Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices. Angewandte Chemie, 2021, 133, 6101-6106.	1.6	5
134	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	0.8	5
135	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123.	3.2	4
136	Elucidating the impact of N-arylanilino substituents of squaraines on their photovoltaic performances. Organic Electronics, 2019, 66, 188-194.	1.4	4
137	A terpyridine-modified chrysene derivative as an electron transporter to improve the lifetime in phosphorescent OLEDs. Journal of Materials Chemistry C, 2020, 8, 3200-3205.	2.7	4
138	Constructing Soluble Anthraceneâ€Based Blue Emitters Free of Electrically Inert Alkyl Chains for Efficient Evaporation―and Solutionâ€Based OLEDs. ChemPlusChem, 2022, 87, e202100517.	1.3	4
139	High-Efficiency Sky Blue-To-Green Fluorescent Emitters Based on 3-Pyridinecarbonitrile Derivatives. Frontiers in Chemistry, 2019, 7, 254.	1.8	3
140	A Novel Series of Thermally and Electrically Stable Hole-transporters End-capped by [1]Benzothieno[3,2- <i>b</i>][1]benzothiophenes for Organic Light-emitting Devices. Chemistry Letters, 2019, 48, 219-222.	0.7	3
141	Organic Light-Emitting Devices: Instant Low-Temperature Cross-Linking of Poly(N-vinylcarbazole) for Solution-Processed Multilayer Blue Phosphorescent Organic Light-Emitting Devices (Adv. Mater.) Tj ETQq1 1 0.78	34 31.4 rgB	T Øverlock
142	Pâ€174: Improved Operation Lifetime of Highly Efficient Skyâ€Blue TADF OLEDs using Hexaphenylbenzeneâ€based Holeâ€transporters. Digest of Technical Papers SID International Symposium, 2019, 50, 1889-1890.	0.1	2
143	A Series of Dibenzofuranâ€Based nâ€Type Exciplex Host Partners Realizing Highâ€Efficiency and Stable Deepâ€Red Phosphorescent OLEDs. Chemistry - A European Journal, 2019, 25, 7231-7231.	1.7	2
144	Bis(Triphenylamine)Benzodifuran Chromophores: Synthesis, Electronic Properties and Application in Organic Light-Emitting Diodes. Frontiers in Chemistry, 2021, 9, 721272.	1.8	2

#	Article	IF	CITATIONS
145	Syntheses of Solution-Processable Arylamine Derivatives and Their Application to Organic Light Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 335-339.	0.1	1
146	Organic Lightâ€Emitting Devices: Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â^'1} (Adv. Mater. 13/2016). Advanced Materials, 2016, 28, 2651-2651.	11.1	1
147	Pâ€192: Efficient Deep Red Phosphorescent OLEDs with an EL Emission Peak of 670 nm. Digest of Technical Papers SID International Symposium, 2017, 48, 1991-1992.	0.1	1
148	DBP and C70 based inverted tandem solar cells using a simple interconnecting layer. RSC Advances, 2017, 7, 34664-34668.	1.7	1
149	Low Molecular Weight Materials: Electron-Transport Materials. , 2019, , 1-10.		1
150	Pâ€172: Novel Sterically Bulky Holeâ€Transporters Realizing Enhanced Operation Lifetime in TADF OLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1884-1885.	0.1	1
151	Perovskite Solar Cells: Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970074.	7.8	1
152	Spirobiacridine-based Host Material for Highly Efficient Blue Phosphorescent Organic Light-emitting Devices. Chemistry Letters, 2020, 49, 228-231.	0.7	1
153	Dibenzothiophene/Terpyridine Conjugated Asymmetric Electron-Transporters for High-efficiency and Long-life Green Phosphorescent OLEDs. Chemistry Letters, 2021, 50, 534-537.	0.7	1
154	Asymmetric Spirobiacridineâ€based Delayed Fluorescence Emitters for Highâ€performance Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2021, 27, 10780-10780.	1.7	1
155	Controlling the electronic structures of triphenylene based sky blue TADF emitters by chemical modifications for high efficiency with shorter emission lifetimes. Chemical Engineering Journal, 2022, 435, 134925.	6.6	1
156	57.2:Invited Paper: White OLEDs for General Lighting. Digest of Technical Papers SID International Symposium, 2012, 43, 776-777.	0.1	0
157	Extremely high-efficiency multiphoton emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. , 2012, , .		0
158	Development of Phenylpyridine-Containing Wide-Energy-Gap Electron-Transporters for High Performance OLEDs. Kobunshi Ronbunshu, 2013, 70, 360-369.	0.2	0
159	Organic Light Emitting Devices: Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	1.9	0
160	P-169: Light-Blue Thermally Activated Delayed Fluorescent Emitters Realizing a High External Quantum Efficiency of 25%. Digest of Technical Papers SID International Symposium, 2016, 47, 1754-1756.	0.1	0
161	A series of pyrimidine based blue to green thermally activated delayed fluorescent emitters realizing a high EQE of 25%. , 2016, , .		0
162	Pâ€191: Realizing Deepâ€Blue TADF Emission with CIE of (0.16, 0.15) using a Highly Twisted Acceptor Unit. Digest of Technical Papers SID International Symposium, 2017, 48, 1989-1990.	0.1	0

#	Article	IF	CITATIONS
163	OLEDs: Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidine-Based Emitter (Advanced Optical Materials 6/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
164	Organic LEDs: Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electron-Transport Materials (Advanced Optical Materials 17/2018). Advanced Optical Materials, 2018, 6, 1870067.	3.6	0
165	Molecular Orientation: Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970131.	11.1	0
166	Photochemistry: A Series of Imidazo[1,2â€f]phenanthridineâ€Based Skyâ€Blue TADF Emitters Realizing EQE of over 20% (Advanced Optical Materials 5/2019). Advanced Optical Materials, 2019, 7, 1970020.	3.6	0
167	Alkoxyphenyl Group-Containing Starburst Host Materials for Efficient Blue and Green Organic Light-Emitting Devices. IEICE Transactions on Electronics, 2011, E94-C, 1848-1850.	0.3	Ο
168	50â€4: Highâ€Performance Pyrimidineâ€Based TADF Emitters Realizing Pure Blueâ€toâ€Green Emission with EQE 25%. Digest of Technical Papers SID International Symposium, 2017, 48, 754-755.	E of 0.1	0
169	Low Molecular Weight Materials: Hole-Transport Materials. , 2019, , 1-6.		Ο