Qing Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302329/publications.pdf

Version: 2024-02-01

		516710	794594
19	1,536	16	19
papers	citations	h-index	g-index
19	19	19	2481
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging of heterostructured materials in CO2 electroreduction: A perspective. Carbon Capture Science & Technology, 2022, 3, 100043.	10.4	8
2	Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. ACS Nano, 2021, 15, 6551-6561.	14.6	55
3	Preparation and functionalization of free-standing nitrogen-doped carbon-based catalyst electrodes for electrocatalytic N2 fixation. Molecular Catalysis, 2021, 515, 111935.	2.0	5
4	From Molecular Precursors to Nanoparticles—Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	14.9	57
5	Electrochemical N ₂ Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Applied Energy Materials, 2020, 3, 10061-10069.	5.1	40
6	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO ₂ to CO at low overpotential. Green Chemistry, 2020, 22, 3095-3103.	9.0	16
7	Overcoming Chemical Inertness under Ambient Conditions: A Critical View on Recent Developments in Ammonia Synthesis via Electrochemical N ₂ Reduction by Asking Five Questions. ChemElectroChem, 2020, 7, 878-889.	3.4	32
8	Enhanced Electrocatalytic N ₂ Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites. Angewandte Chemie, 2019, 131, 13235-13240.	2.0	24
9	Enhanced Electrocatalytic N ₂ Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites. Angewandte Chemie - International Edition, 2019, 58, 13101-13106.	13.8	152
10	Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron–Carbon–Nitrogen Catalyst. ACS Applied Energy Materials, 2019, 2, 8359-8365.	5.1	43
11	Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO ₂ Nanosheets with Abundant Pd–O–Sn Interfaces. Angewandte Chemie, 2018, 130, 9619-9623.	2.0	24
12	Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO ₂ Nanosheets with Abundant Pd–O–Sn Interfaces. Angewandte Chemie - International Edition, 2018, 57, 9475-9479.	13.8	218
13	Singleâ€Site Gold Catalysts on Hierarchical Nâ€Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. Small Methods, 2018, 2, 1800202.	8.6	214
14	Template―and Metalâ€Free Synthesis of Nitrogenâ€Rich Nanoporous "Noble―Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. Angewandte Chemie - International Edition, 2018, 57, 10765-10770.	13.8	83
15	Selfâ€Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol. Small, 2017, 13, 1602970.	10.0	168
16	Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3, e1701069.	10.3	211
17	Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co ₃ O ₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Central Science, 2016, 2, 538-544.	11.3	120
18	Carbonâ€Monoxideâ€Assisted Synthesis of Ultrathin PtCu Alloy Nanosheets and Their Enhanced Catalysis. ChemNanoMat, 2016, 2, 776-780.	2.8	46

#	Article	IF	CITATIONS
19	Calcium-Aggregated Milk: a Potential New Option for Improving the Viability of Lactic Acid Bacteria Under Heat Stress. Food and Bioprocess Technology, 2014, 7, 3147-3155.	4.7	20