
Gary J Brierley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022633/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 2007, 70, 49-67.	2.2	466
2	The Use of System Dynamics Simulation in Water Resources Management. Water Resources Management, 2009, 23, 1301-1323.	1.9	333
3	Landscape connectivity: the geographic basis of geomorphic applications. Area, 2006, 38, 165-174.	1.0	277
4	RANGELAND DEGRADATION ON THE QINGHAIâ€TIBET PLATEAU: IMPLICATIONS FOR REHABILITATION. Land Degradation and Development, 2013, 24, 72-80.	1.8	275
5	Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 2019, 44, 4-26.	1.2	233
6	Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology, 2001, 38, 237-265.	1.1	207
7	Geomorphic responses of lower Bega River to catchment disturbance, 1851–1926. Geomorphology, 1997, 18, 291-304.	1.1	189
8	The long-term control of vegetation and woody debris on channel and flood-plain evolution: insights from a paired catchment study in southeastern Australia. Geomorphology, 2003, 51, 7-29.	1.1	173
9	Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology, 2007, 84, 297-316.	1.1	173
10	River Styles, a Geomorphic Approach to Catchment Characterization: Implications for River Rehabilitation in Bega Catchment, New South Wales, Australia. Environmental Management, 2000, 25, 661-679.	1.2	164
11	Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology, 2015, 248, 273-295.	1.1	151
12	What is a fluvial levee?. Sedimentary Geology, 1997, 114, 1-9.	1.0	149
13	A geomorphological framework for river characterization and habitat assessment. Aquatic Conservation: Marine and Freshwater Ecosystems, 2001, 11, 373-389.	0.9	140
14	Don't Fight the Site: Three Geomorphic Considerations in Catchment-Scale River Rehabilitation Planning. Environmental Management, 2009, 43, 1201-1218.	1.2	140
15	Landscape memory: the imprint of the past on contemporary landscape forms and processes. Area, 2010, 42, 76-85.	1.0	138
16	Reading the landscape. Progress in Physical Geography, 2013, 37, 601-621.	1.4	131
17	Application of the River Styles framework as a basis for river management in New South Wales, Australia. Applied Geography, 2002, 22, 91-122.	1.7	112
18	An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms, 2016, 41, 701-710.	1.2	111

#	Article	IF	CITATIONS
19	The downstream gradation of particle sizes in the Squamish river, British Columbia. Earth Surface Processes and Landforms, 1985, 10, 597-606.	1.2	109
20	The Use of Evolutionary Trajectories to Guide â€~Moving Targets' in the Management of River Futures. River Research and Applications, 2016, 32, 823-835.	0.7	108
21	Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surface Processes and Landforms, 2012, 37, 763-773.	1.2	100
22	Mediated equilibrium: the influence of riparian vegetation and wood on the long-term evolution and behaviour of a near-pristine river. Earth Surface Processes and Landforms, 2002, 27, 343-367.	1.2	96
23	Assessment of downstream trends in channel gradient, total and specific stream power: a GIS approach. Geomorphology, 2004, 60, 403-416.	1.1	94
24	A GEOMORPHIC APPROACH TO THE IDENTIFICATION OF RIVER RECOVERY POTENTIAL. Physical Geography, 2000, 21, 244-277.	0.6	87
25	Ethnogeomorphology. Progress in Physical Geography, 2013, 37, 573-600.	1.4	86
26	Channel planform as a non-controlling factor in fluvial sedimentology: the case of the squamish river floodplain, British Columbia. Sedimentary Geology, 1991, 75, 67-83.	1.0	84
27	Cultivating critical practices in physical geography. Geographical Journal, 2015, 181, 160-171.	1.6	80
28	Slope–channel decoupling in Wolumla catchment, New South Wales, Australia: the changing nature of sediment sources following European settlement. Catena, 1999, 35, 41-63.	2.2	79
29	River classification: theory, practice, politics. Wiley Interdisciplinary Reviews: Water, 2014, 1, 349-367.	2.8	79
30	Floodplain sedimentology of the Squamish River, British Columbia: relevance of element analysis. Sedimentology, 1991, 38, 735-750.	1.6	78
31	Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia. Geomorphology, 2006, 74, 297-317.	1.1	78
32	Naturalness and Place in River Rehabilitation. Ecology and Society, 2009, 14, .	1.0	78
33	Post-European changes to the fluvial geomorphology of Bega catchment, Australia: implications for river ecology. Freshwater Biology, 1999, 41, 839-848.	1.2	77
34	A critical review of catchment-scale stream rehabilitation programmes. Progress in Physical Geography, 2005, 29, 50-76.	1.4	77
35	â€~But what do you measure?' Prospects for a constructive critical physical geography. Area, 2016, 48, 190-197.	1.0	76
36	River planform facies models: the sedimentology of braided, wandering and meandering reaches of the Squamish River, British Columbia. Sedimentary Geology, 1989, 61, 17-35.	1.0	75

#	Article	IF	CITATIONS
37	The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks. PLoS ONE, 2016, 11, e0150293.	1.1	75
38	Impacts of land use change on patterns of sediment flux in Weraamaia catchment, New Zealand. Catena, 2005, 64, 27-60.	2.2	73
39	The character and age structure of valley fills in upper Wolumla Creek catchment, south coast, New South Wales, Australia. , 1998, 23, 271-287.		71
40	Linking geomorphic character, behaviour and condition to fluvial biodiversity: implications for river management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2006, 16, 267-288.	0.9	71
41	Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia. Geomorphology, 2010, 117, 106-120.	1.1	71
42	Assessing the geomorphic recovery potential of rivers: forecasting future trajectories of adjustment for use in management. Wiley Interdisciplinary Reviews: Water, 2016, 3, 727-748.	2.8	71
43	Variability of effective discharge for suspended sediment transport in a large semi-arid river basin. Journal of Hydrology, 2010, 388, 357-369.	2.3	70
44	QUANTITATIVE ASSESSMENT OF DEGRADATION CLASSIFICATIONS for DEGRADED ALPINE MEADOWS (HEITUTAN), SANJIANGYUAN, WESTERN CHINA. Land Degradation and Development, 2014, 25, 417-427.	1.8	70
45	Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes. Bulletin of the Geological Society of America, 2008, 120, 127-141.	1.6	69
46	Levee morphology and sedimentology along the lower Tuross River, south-eastern Australia. Sedimentology, 1999, 46, 627-648.	1.6	66
47	Did humid-temperate rivers in the Old and New Worlds respond differently to clearance of riparian vegetation and removal of woody debris?. Progress in Physical Geography, 2005, 29, 27-49.	1.4	64
48	Sedimentology of coarse-grained alluvial fans in the Markham Valley, Papua New Guinea. Sedimentary Geology, 1993, 86, 297-324.	1.0	60
49	What's in a name? A naming convention for geomorphic river types using the River Styles Framework. PLoS ONE, 2018, 13, e0201909.	1.1	60
50	Tributary–trunk stream relations in a cut-and-fill landscape: a case study from Wolumla catchment, New South Wales, Australia. Geomorphology, 1999, 28, 61-73.	1.1	58
51	A fluvial sediment budget for upper Wolumla Creek, south coast, New South Wales, Australia. Australian Geographer, 1998, 29, 107-124.	1.0	56
52	What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition. Science of the Total Environment, 2010, 408, 2025-2033.	3.9	55
53	Spatial variability in the timing, nature and extent of channel response to typical human disturbance along the Upper Hunter River, New South Wales, Australia. Earth Surface Processes and Landforms, 2008, 33, 868-889.	1.2	53
54	Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, 2020, 736, 139627.	3.9	53

#	Article	IF	CITATIONS
55	Has river rehabilitation begun? Social perspectives from the Upper Hunter catchment, New South Wales, Australia. Geoforum, 2010, 41, 399-409.	1.4	52
56	Nature, culture, and the work of physical geography. Transactions of the Institute of British Geographers, 2012, 37, 547-562.	1.8	51
57	Framing realistic river rehabilitation targets in light of altered sediment supply and transport relationships: lessons from East Gippsland, Australia. Geomorphology, 2004, 58, 107-123.	1.1	50
58	Floodplain development based on selective preservation of sediments, Squamish River, British Columbia. Geomorphology, 1992, 4, 381-391.	1.1	48
59	An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow Rivers. Catena, 2014, 119, 143-153.	2.2	48
60	Shrinkage of the Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau. Catena, 2015, 126, 155-163.	2.2	48
61	Assessing geomorphic sensitivity in relation to river capacity for adjustment. Geomorphology, 2015, 251, 108-121.	1.1	43
62	Tracking geomorphic recovery in processâ€based river management. Land Degradation and Development, 2018, 29, 3221-3244.	1.8	43
63	Channel bed adjustments following major aggradation in a steep headwater setting: findings from Oyabu Creek, Kyushu, Japan. Geomorphology, 2004, 62, 199-215.	1.1	42
64	European impacts on downstream sediment transfer and bank erosion in Cobargo catchment, New South Wales, Australia. Catena, 1997, 31, 119-136.	2.2	41
65	Pool-fills: a window to palaeoflood history and response in bedrock-confined rivers. Sedimentology, 2004, 51, 901-925.	1.6	41
66	A geomorphic perspective on the rights of the river in Aotearoa New Zealand. River Research and Applications, 2019, 35, 1640-1651.	0.7	40
67	Geomorphology in action: Linking policy with on-the-ground actions through applications of the River Styles framework. Applied Geography, 2011, 31, 1132-1143.	1.7	39
68	Within-catchment variability in landscape connectivity measures in the Garang catchment, upper Yellow River. Geomorphology, 2017, 277, 197-209.	1.1	39
69	To plugâ€in or not to plugâ€in? Geomorphic analysis of rivers using the River Styles Framework in an era of big data acquisition and automation. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1372.	2.8	39
70	An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China. Journal of Mountain Science, 2013, 10, 668-686.	0.8	38
71	Migration and cutoff of meanders in the hyperarid environment of the middle Tarim River, northwestern China. Geomorphology, 2017, 276, 116-124.	1.1	38
72	Postâ€European settlement response gradients of river sensitivity and recovery across the upper Hunter catchment, Australia. Earth Surface Processes and Landforms, 2009, 34, 897-918.	1.2	37

#	Article	IF	CITATIONS
73	Mapping valley bottom confinement at the network scale. Earth Surface Processes and Landforms, 2019, 44, 1828-1845.	1.2	37
74	Are River Styles ecologically meaningful? A test of the ecological significance of a geomorphic river characterization scheme. Aquatic Conservation: Marine and Freshwater Ecosystems, 2004, 14, 25-48.	0.9	36
75	Ecological classification and mapping for landscape management and science. Progress in Physical Geography, 2016, 40, 38-65.	1.4	34
76	Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. Journal of Mountain Science, 2013, 10, 687-698.	0.8	33
77	An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed, Semiarid Brazil. Catena, 2016, 138, 13-29.	2.2	33
78	Landscape archetypes for ecological classification and mapping. Progress in Physical Geography, 2017, 41, 95-123.	1.4	33
79	Patterns of sediment slug translation and dispersion following typhoon-induced disturbance, Oyabu Creek, Kyushu, Japan. Earth Surface Processes and Landforms, 2004, 29, 59-76.	1.2	32
80	Inside the "Black Box" of River Restoration: Using Catchment History to Identify Disturbance and Response Mechanisms to Set Targets for Process-Based Restoration. Ecology and Society, 2010, 15, .	1.0	32
81	Quantitative assessment of the relationships among ecological, morphological and aesthetic values in a river rehabilitation initiative. Journal of Environmental Management, 2015, 153, 60-67.	3.8	32
82	Temporal variability of climate in southâ€eastern Australia: a reassessment of flood―and droughtâ€dominated regimes. Australian Geographer, 1998, 29, 241-255.	1.0	31
83	Let the Rivers Speak. Policy Quarterly, 2019, 15, .	0.2	31
84	The relationship between geomorphic river adjustment and management actions over the last 50 years in the Upper Hunter Catchment, NSW, Australia. River Research and Applications, 2009, 25, 904-928.	0.7	30
85	The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surface Processes and Landforms, 2014, 39, 2038-2055.	1.2	29
86	Geodiversity in the Yellow River source zone. Journal of Chinese Geography, 2013, 23, 775-792.	1.5	27
87	A broad overview of landscape diversity of the Yellow River source zone. Journal of Chinese Geography, 2013, 23, 793-816.	1.5	27
88	An exploratory analysis of benthic macroinvertebrates as indicators of the ecological status of the Upper Yellow and Yangtze Rivers. Journal of Chinese Geography, 2013, 23, 871-882.	1.5	27
89	Information Needs for Environmental-Flow Allocation: A Case Study from the Lachlan River, New South Wales, Australia. Annals of the American Association of Geographers, 2002, 92, 617-630.	3.0	25
90	River Recovery in An Urban Catchment: Twin Streams Catchment, Auckland, New Zealand. Physical Geography, 2008, 29, 222-246.	0.6	25

6

#	Article	IF	CITATIONS
91	Ecological Protection and Restoration in Sanjiangyuan National Nature Reserve, Qinghai Province, China. , 2012, , 93-120.		25
92	The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology, 2013, 180-181, 255-266.	1.1	25
93	Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance. Geomorphology, 2018, 307, 50-64.	1.1	25
94	Things we can do now that we could not do before: Developing and using a cross-scalar, state-wide database to support geomorphologically-informed river management. PLoS ONE, 2021, 16, e0244719.	1.1	25
95	Dominant perspectives and the shape of urban stormwater futures. Urban Water Journal, 2011, 8, 337-349.	1.0	24
96	Hydromorphological frameworks: emerging trajectories. Aquatic Sciences, 2016, 78, 135-138.	0.6	24
97	Assemblages of geomorphic units: A building block approach to analysis and interpretation of river character, behaviour, condition and recovery. Earth Surface Processes and Landforms, 2022, 47, 92-108.	1.2	24
98	Understanding barrier interactions to support the implementation of sustainable urban water management. Urban Water Journal, 2014, 11, 497-505.	1.0	23
99	Influence of bed heterogeneity and habitat type on macroinvertebrate uptake in peri-urban streams. International Journal of Sediment Research, 2010, 25, 203-220.	1.8	22
100	Analysis of longitudinal profiles along the eastern margin of the Qinghai-Tibetan Plateau. Journal of Mountain Science, 2013, 10, 643-657.	0.8	22
101	How far have management practices come in â€~working with the river'?. Earth Surface Processes and Landforms, 2021, 46, 3004-3010.	1.2	22
102	Groundâ€penetrating radar and sedimentological analysis of Holocene floodplains: Insight from the Tuross valley, New South Wales. Australian Journal of Earth Sciences, 2001, 48, 347-355.	0.4	21
103	Late Quaternary river evolution of floodplain pockets along Mulloon Creek, New South Wales, Australia. Holocene, 2006, 16, 661-674.	0.9	21
104	Measures of Physical Heterogeneity in Appraisal of Geomorphic River Condition for Urban Streams: Twin Streams Catchment, Auckland, New Zealand. Physical Geography, 2008, 29, 247-274.	0.6	21
105	Using geomorphic understanding of catchment-scale process relationships to support the management of river futures: Maca \tilde{A} Basin, Brazil. Applied Geography, 2017, 84, 23-41.	1.7	21
106	Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management. Geoscience Letters, 2022, 9, .	1.3	21
107	Knowing Your Place: an Australasian perspective on catchment-framed approaches to river repair. Australian Geographer, 2006, 37, 131-145.	1.0	20
108	Geomorphic-centered classification of wetlands on the Qinghai-Tibet Plateau, Western China. Journal of Mountain Science, 2013, 10, 632-642.	0.8	19

#	Article	IF	CITATIONS
109	A geomorphic assessment to inform strategic stream restoration planning in the Middle Fork John Day Watershed, Oregon, USA. Journal of Maps, 2017, 13, 369-381.	1.0	19
110	The Importance of Process in Ecosystem Management: Lessons from the Lachlan Catchment, New South Wales, Australia. Journal of Environmental Planning and Management, 2003, 46, 219-237.	2.4	18
111	Alluvial terrace systems in Zhangjiajie of northwest Hunan, China: Implications for climatic change, tectonic uplift and geomorphic evolution. Quaternary International, 2011, 233, 27-39.	0.7	18
112	Rehabilitation of a debris-flow prone mountain stream in southwestern China – Strategies, effects and implications. Journal of Hydrology, 2012, 414-415, 231-243.	2.3	18
113	Analysis of controls upon channel planform at the First Great Bend of the Upper Yellow River, Qinghai-Tibet Plateau. Journal of Chinese Geography, 2013, 23, 833-848.	1.5	18
114	A spatial simulation model to assess controls upon grassland degradation on the Qinghai-Tibet Plateau, China. Applied Geography, 2018, 98, 166-176.	1.7	18
115	The dark art of interpretation in geomorphology. Geomorphology, 2021, 390, 107870.	1.1	18
116	Channel instability in a forested catchment: a case study from Jones Creek, East Gippsland, Australia. Geomorphology, 2000, 32, 109-128.	1.1	17
117	Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers. Journal of Chinese Geography, 2013, 23, 817-832.	1.5	17
118	Monitoring channel responses to flood events of low to moderate magnitudes in a bedrock-dominated river using morphological budgeting by terrestrial laser scanning. Geomorphology, 2015, 235, 1-14.	1.1	17
119	Landscape structure and dynamics on the Qinghai-Tibetan Plateau. Ecological Modelling, 2016, 339, 7-22.	1.2	17
120	Engaging with research impact assessment for an environmental science case study. Nature Communications, 2019, 10, 4542.	5.8	17
121	Impacts of flow regulation on geomorphic adjustment and riparian vegetation succession along an anabranching reach of the Upper Yellow River. Catena, 2020, 190, 104561.	2.2	17
122	Grassland Ecosystems of the Yellow River Source Zone: Degradation and Restoration. Springer Geography, 2016, , 137-165.	0.3	17
123	The influence of plant root system architectural properties upon the stability of loess hillslopes, Northeast Qinghai, China. Journal of Mountain Science, 2016, 13, 785-801.	0.8	16
124	Geomorphic responses to land use change: lessons from different landscape settings. Earth Surface Processes and Landforms, 2002, 27, 339-341.	1.2	15
125	Communicating Geomorphology. Journal of Geography in Higher Education, 2009, 33, 3-17.	1.4	15
126	Emerging geomorphic approaches to guide river management practices. Geomorphology, 2015, 251, 1-5.	1.1	15

#	Article	IF	CITATIONS
127	Vegetative impacts upon bedload transport capacity and channel stability for differing alluvial planforms in the Yellow River source zone. Hydrology and Earth System Sciences, 2016, 20, 3013-3025.	1.9	15
128	Channel geomorphology and riparian vegetation interactions along four anabranching reaches of the Upper Yellow River. Progress in Physical Geography, 2020, 44, 898-922.	1.4	15
129	Governance Spaces for Sustainable River Management. Geography Compass, 2011, 5, 182-199.	1.5	14
130	Topographic influence on wetland distribution and change in Maduo County, Qinghai-Tibet Plateau, China. Journal of Mountain Science, 2012, 9, 362-371.	0.8	14
131	The influence of network structure upon sediment routing in two disturbed catchments, East Cape, New Zealand. Geomorphology, 2018, 307, 38-49.	1.1	14
132	Introduction: Landscape and Ecosystem Diversity in the Yellow River Source Zone. Springer Geography, 2016, , 1-34.	0.3	13
133	Finding the Voice of the River. , 2020, , .		13
134	Geoethical futures: A call for more-than-human physical geography. The Environment and Planning F, Philosophyory, Models, Methods and Practice, 2022, 1, 66-81.	0.2	13
135	Bar Sedimentology of the Squamish River, British Columbia: Definition and Application of Morphostratigraphic Units. Journal of Sedimentary Research, 1991, Vol. 61, .	0.8	12
136	Automatic river planform identification by a logical-heuristic algorithm. Geomorphology, 2021, 375, 107558.	1.1	12
137	Development and application of vision statements in river rehabilitation: the experience of Project Twin Streams, New Zealand. Area, 2010, 42, 468-478.	1.0	11
138	The Geographic Basis of Geomorphic Enquiry. Geography Compass, 2011, 5, 21-34.	1.5	11
139	Improved Estimation of Aboveground Biomass of Disturbed Grassland through Including Bare Ground and Grazing Intensity. Remote Sensing, 2021, 13, 2105.	1.8	11
140	Spatial Variability of Controls on Downstream Patterns of Sediment Storage: a Case Study in the Lane Cove Catchment, New South Wales, Australia. Geographical Research, 2006, 44, 255-271.	0.9	10
141	Effectiveness of the river environment classification in the Auckland Region. New Zealand Geographer, 2008, 64, 181-193.	0.4	10
142	Graph-assisted landscape monitoring. International Journal of Geographical Information Science, 2015, 29, 580-605.	2.2	10
143	The role of landscape setting in minimizing hydrogeomorphic impacts of flow regulation. International Journal of Sediment Research, 2013, 28, 149-161.	1.8	9
144	Learning to Participate: Responding to Changes in Australian Land and Water Management Policy and Practice. Australian Journal of Environmental Education, 2002, 18, 7-13.	1.4	8

#	Article	IF	CITATIONS
145	Effects of disturbances on aboveground biomass of alpine meadow in the Yellow River Source Zone, Western China. Ecology and Evolution, 2022, 12, e8640.	0.8	8
146	The Relationship between Geomorphic River Structure and Coarse Particulate Organic Matter (CPOM) Storage along the Kangaroo River, New South Wales, Australia. Australian Geographer, 2006, 37, 285-311.	1.0	7
147	Multi-scalar controls on channel geometry of headwater streams in New Zealand hill country. Catena, 2014, 113, 341-352.	2.2	7
148	THE USE OF THE RIVER STYLES FRAMEWORK AS A TOOL TO â€~WORK WITH NATURE' IN MANAGING RIVERS I BRAZIL: EXAMPLES FROM THE MACAÉ CATCHMENT. Revista Brasileira De Geomorfologia, 2019, 20, .	N 0.1	7
149	Hydrology of the Yellow River Source Zone. Springer Geography, 2016, , 79-99.	0.3	6
150	Geomorphic Diversity of Rivers in the Upper Yellow River Basin. Springer Geography, 2016, , 59-77.	0.3	6
151	Assessment of the geoâ€ecoâ€hydrological condition of anabranching reaches in the Source Zone of the Yellow River, western China. River Research and Applications, 2021, 37, 683-698.	0.7	6
152	Naming conventions in geomorphology: contributions and controversies in the sandstone landscape of Zhangjiajie Geopark, China. Earth Surface Processes and Landforms, 2011, 36, 1981-1984.	1.2	5
153	Making rivers governable: Ecological monitoring, power and scale. New Zealand Geographer, 2014, 70, 7-21.	0.4	5
154	Hillslope Stability in the Yellow River Source Zone. Springer Geography, 2016, , 101-115.	0.3	5
155	Development of place-based catenal models for grassland ecosystems of the Upper Yellow River, Western China. Catena, 2022, 213, 106193.	2.2	5
156	Landscape relations to eco-environmental dynamics of the Sanjiangyuan. Journal of Chinese Geography, 2013, 23, 771-774.	1.5	4
157	Reworking of basin fill deposits along a tributary of the upper Yellow River: Implications for changes to landscape connectivity. Earth Surface Processes and Landforms, 2018, 43, 710-722.	1.2	4
158	An approach to evaluate the dominant river biogeomorphic succession phase at the reach-scale. Catena, 2022, 217, 106455.	2.2	4
159	Tai Timu, Tai Pari, the ebb and flow of the tides: working with the WaimatÄÂfrom the Mountains to the Sea. New Zealand Journal of Marine and Freshwater Research, 2022, 56, 430-446.	0.8	4
160	16 Sediment organisation along the upper Hunter River, Australia: a multivariate statistical approach. Developments in Earth Surface Processes, 2007, 11, 409-441.	2.8	3
161	Theorizing â€ [~] crisis' as performative politics. Dialogues in Human Geography, 2011, 1, 355-360.	0.8	3
162	Geomorphology and environmental management of the Yellow River source zone. Journal of Mountain Science, 2013, 10, 628-631.	0.8	3

#	Article	IF	CITATIONS
163	Streams of Writing From a Fluid City. Qualitative Inquiry, 2013, 19, 736-740.	1.0	3
164	Finding common ground: use of a geographically-framed landscape template as an integrating platform for an international education initiative. Journal of Geography in Higher Education, 2018, 42, 25-43.	1.4	3
165	Conclusion: Environmental Futures of the Upper Yellow River Basin. Springer Geography, 2016, , 353-369.	0.3	3
166	The Influence of Lateral Confinement Upon the Downstream Gradation in Grain Size of the Lower Ngaruroro River, New Zealand. The Open Geology Journal, 2008, 2, 46-63.	0.4	3
167	Geomorphic characterization of a seasonal river network in semi-arid western India using the River Styles Framework. Journal of Asian Earth Sciences: X, 2022, 7, 100077.	0.6	3
168	Spatial history of kauri driving dam placement in the Kauaeranga Valley, Coromandel Peninsula. New Zealand Geographer, 2009, 65, 171-186.	0.4	2
169	Reading the Landscape in Field-Based Fluvial Geomorphology. Developments in Earth Surface Processes, 2014, 18, 231-257.	2.8	2
170	Environmental Science and Management in a Changing World. , 2012, , 11-30.		2
171	The Imprint of Landscape Memory upon Catchment-scale Sediment Budgets. International Journal of Erosion Control Engineering, 2006, 3, 4-8.	0.5	2
172	LEARNING, DOING AND PROFESSIONAL DEVELOPMENT – THE RIVER STYLES FRAMEWORK AS A TOOL TO SUPPORT THE DEVELOPMENT OF COHERENT AND STRATEGIC APPROACHES FOR LAND AND WATER MANAGEMENT IN BRAZIL. Revista Brasileira De Geomorfologia, 2019, 20, .	0.1	2
173	River Styles and stream power analysis reveal the diversity of fluvial morphology in a Philippine tropical catchment. Geoscience Letters, 2022, 9, .	1.3	2
174	Geoâ€ecoâ€hydrology of the Upper Yellow River. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	2
175	River adjustments, geomorphic sensitivity and management implications in the Waipĕcatchment, Aotearoa New Zealand. Geomorphology, 2022, 410, 108263.	1.1	2
176	Quantifying Sediment (Dis)Connectivity in the Modeling of River Systems. , 2021, , .		1
177	What Does It Mean to Find the Voice of the River?. , 2020, , 1-28.		1
178	Environmental futures. New Zealand Geographer, 2005, 61, 185-186.	0.4	0
179	Sediment Budgets. Encyclopedia of Earth Sciences Series, 2011, , 975-979.	0.1	0

A Strategy to Express the Voice of the River. , 2020, , 111-150.

0

	ITATION
181Competitive Versus Cooperative Approaches to River Repair. , 2020, , 61-110.0	