Jorge R Robledo-OrtÃ-z

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022396/publications.pdf

Version: 2024-02-01

59 1,348 20 34
papers citations h-index g-index

62 62 62 1257 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products, 2017, 99, 117-125.	5.2	91
2	Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 2017, 24, 35-53.	2.3	85
3	Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review. Composite Interfaces, 2018, 25, 515-538.	2.3	69
4	Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Materials & Design, 2014, 64, 35-43.	5.1	58
5	Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polymer Degradation and Stability, 2020, 179, 109290.	5.8	56
6	Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites. Journal of Polymers and the Environment, 2019, 27, 61-73.	5.0	50
7	A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Separation and Purification Reviews, 2022, 51, 358-372.	5.5	48
8	Polylactic acid–agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 2018, 37, 2528-2540.	1.7	46
9	Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	45
10	Effect of coupling agent content and water absorption on the mechanical properties of coirâ€agave fibers reinforced polyethylene hybrid composites. Polymer Composites, 2016, 37, 3015-3024.	4.6	44
11	Non-isothermal decomposition kinetics of azodicarbonamide in high density polyethylene using a capillary rheometer. Polymer Testing, 2008, 27, 730-735.	4.8	41
12	Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. Journal of Polymers and the Environment, 2020, 28, 1040-1049.	5.0	41
13	Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration and Biodegradation, 2011, 65, 539-546.	3.9	39
14	Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering and Science, 2016, 56, 856-865.	3.1	36
15	Congo red adsorption with cellulose-graphene nanoplatelets beads by differential column batch reactor. Journal of Environmental Chemical Engineering, 2021, 9, 105029.	6.7	34
16	Chemically Modified Polysaccharides for Hexavalent Chromium Adsorption. Separation and Purification Reviews, 2021, 50, 333-362.	5.5	30
17	Chitosan Supported onto Agave Fiberâ€"Postconsumer HDPE Composites for Cr(VI) Adsorption. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 5939-5946.	3.7	28
18	Morphological and mechanical characterization of foamed polyethylene via biaxial rotational molding. Journal of Cellular Plastics, 2015, 51, 489-503.	2.4	28

#	Article	IF	CITATIONS
19	Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dryâ€blending and compression molding. Polymer Composites, 2017, 38, 96-104.	4.6	26
20	Chemical modification of cellulose with zwitterion moieties used in the uptake of red Congo dye from aqueous media. Cellulose, 2019, 26, 9207-9227.	4.9	23
21	Valorization of Sugarcane Straw for the Development of Sustainable Biopolymer-Based Composites. Polymers, 2021, 13, 3335.	4.5	22
22	Fixed-bed adsorption of Cr(VI) onto chitosan supported on highly porous composites. Environmental Technology and Innovation, 2020, 19, 100824.	6.1	20
23	Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 2015, 23, 126-136.	5.0	19
24	Compressive strength study of cement mortars lightened with foamed HDPE nanocomposites. Materials & Design, 2015, 74, 119-124.	5.1	19
25	Biodegradability and improved mechanical performance of polyhydroxyalkanoates/agave fiber biocomposites compatibilized by different strategies. Journal of Applied Polymer Science, 2021, 138, 50182.	2.6	19
26	Mechanical and Physicochemical Properties of 3D-Printed Agave Fibers/Poly(lactic) Acid Biocomposites. Materials, 2021, 14, 3111.	2.9	19
27	Injection molded selfâ€hybrid composites based on polypropylene and natural fibers. Polymer Composites, 2014, 35, 1798-1806.	4.6	18
28	Effect of surface treatment on the physical and mechanical properties of injection molded poly(lactic) Tj ETQq0	0 0 rgBT /0 4.6	Overlock 10 Tf
00			
29	Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865.	0.4	18
30	Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364.	5.0	18
	culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with		
30	Culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364. Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials	5.0	17
30	culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364. Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials Letters, 2020, 263, 127289. Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix	5.0	17 16
30 31 32	Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364. Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials Letters, 2020, 263, 127289. Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix Adhesion. Journal of Polymers and the Environment, 2021, 29, 937-947. Biosynthesis of silver nanoparticles using a natural extract obtained from an agroindustrial residue	5.0 2.6 5.0	17 16 15
30 31 32	culture medium. Revista Mexicana De Ingeniera Quimica, 2019, 19, 851-865. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364. Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials Letters, 2020, 263, 127289. Accelerated Weathering of Polylactic Acid/Agave Fiber Biocomposites and the Effect of Fiber–Matrix Adhesion. Journal of Polymers and the Environment, 2021, 29, 937-947. Biosynthesis of silver nanoparticles using a natural extract obtained from an agroindustrial residue of the tequila industry. Materials Letters, 2018, 213, 278-281. Evaluation of the Cr(VI) Adsorption Performance of Xanthate Polysaccharides Supported onto Agave	5.0 2.6 5.0 2.6	17 16 15

#	Article	IF	Citations
37	Bacterial immobilization by adhesion onto agave-fiber/polymer foamed composites. Bioresource Technology, 2010, 101, 1293-1299.	9.6	12
38	Thermal analysis of foamed polyethylene rotational molding followed by internal air temperature profiles. Polymer Engineering and Science, 2018, 58, E235.	3.1	12
39	GLYCIDYL METHACRYLATE AS COMPATIBILIZER OF POLY(LACTIC ACID)/NANOCLAY/AGAVE FIBER HYBRID BIOCOMPOSITES: EFFECT ON THE PHYSICAL AND MECHANICAL PROPERTIES. Revista Mexicana De Ingeniera Quimica, 2019, 19, 455-469.	0.4	12
40	Forest soil bacteria able to produce homo and copolymers of polyhydroxyalkanoates from several pure and waste carbon sources. Letters in Applied Microbiology, 2020, 70, 300-309.	2.2	11
41	Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites, 2019, 27, 43-54.	1.9	10
42	Fiber-matrix interface improvement via glycidyl methacrylate compatibilization for rotomolded poly(lactic acid)/agave fiber biocomposites. Journal of Composite Materials, 2021, 55, 201-212.	2.4	10
43	Influence of the blending method over the thermal and mechanical properties of biodegradable polylactic acid/polyhydroxybutyrate blends and their wood biocomposites. Polymers for Advanced Technologies, 2021, 32, 3483-3494.	3.2	10
44	Effect of Freeze-Line Position and Stretching Force on the Morphology of LDPE-PA6 Blown Films. Journal of Plastic Film and Sheeting, 2006, 22, 287-314.	2.2	9
45	Zwitterionic cellulose as a promising sorbent for anionic and cationic dyes. Materials Letters, 2021, 300, 130236.	2.6	9
46	Influence of agro-industrial wastes over the abiotic and composting degradation of polylactic acid biocomposites. Journal of Composite Materials, 2022, 56, 43-56.	2.4	8
47	Film processability and properties of polycaprolactone/thermoplastic starch blends. Journal of Applied Polymer Science, 2012, 123, 179-190.	2.6	6
48	A discussion on linear and non-linear forms of Thomas equation for fixed-bed adsorption column modeling. Revista Mexicana De Ingeniera Quimica, 2021, 20, 875-884.	0.4	6
49	Compatibilization strategies for PLA biocomposites: a comparative study between extrusion-injection and dry blending-compression molding. Composite Interfaces, 2022, 29, 274-292.	2.3	6
50	Fiberâ€particle morphological transition and its effect on impact strength of PS/HDPE blends. Polymer Engineering and Science, 2008, 48, 1600-1607.	3.1	5
51	Using Chitosan as a Nucleation Agent in Thermoplastic Foams for Heavy Metal Adsorption. Macromolecular Symposia, 2009, 283–284, 152-158.	0.7	5
52	Improvement of Pb(II) Adsorption Capacity by Controlled Alkali Treatment to Chitosan Supported onto Agave Fiberâ∈HDPE Composites. Macromolecular Symposia, 2017, 374, 1600104.	0.7	5
53	Synthesis of silanized chitosan anchored onto porous composite and its performance in fixed-bed adsorption of Cr(VI). Journal of Environmental Chemical Engineering, 2021, 9, 106353.	6.7	5
54	Rapid Starch Acetylation at Low Temperature Using Iodine as Catalyst. Macromolecular Symposia, 2009, 283–284, 174-180.	0.7	4

#	Article	IF	CITATIONS
55	Increasing the efficiency of organic solar cells by using a bulk electron transport layer of PFN and green synthesized AgNs. Materials Letters, 2019, 237, 101-104.	2.6	3
56	Characterization of Ceramic-Hydrogel Composites for Use in Bone Scaffolds Made Using Additive Manufacturing Techniques. MRS Advances, 2016, 1, 2161-2166.	0.9	2
57	Old Corrugated Container (OCC) Cardboard Material: An Alternative Source for Obtaining Microfibrillated Cellulose. Journal of Natural Fibers, 2022, 19, 9296-9308.	3.1	1
58	Calculating adsorption efficiencies and reusability cycles by retrieving the concept of operating lines. Separation Science and Technology, 2022, 57, 2708-2717.	2.5	1
59	Bacterial Cellulose Produced by Gluconacetobacter xylinus Culture Using Complex Carbon Sources for Biomedical Applications. MRS Advances, 2016, 1, 2563-2567.	0.9	0