Intikhab A Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022389/publications.pdf

Version: 2024-02-01

1684188 1474206 21 76 5 9 citations h-index g-index papers 21 21 21 62 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Estimation of transition temperature Tc for doped MgB2 superconductors by empirical models. Materials Today: Proceedings, 2021, 45, 4417-4420.	1.8	2
2	The study of normalized pinning force behavior in Mg1â^'xTixB2 superconductor. Indian Journal of Physics, 2020, 94, 485-491.	1.8	0
3	Evaluation of specific heat for pristine MgB2 superconductor at normal-state by using lower incomplete gamma function. Materials Today: Proceedings, 2020, 32, 264-267.	1.8	O
4	Vortex dynamics behavior with third harmonic ac-susceptibility for nano Fe-doped MgB2 superconductor. Journal of Materials Science: Materials in Electronics, 2019, 30, 4548-4554.	2.2	1
5	The Analytical Solution of Incomplete Gamma Function to Determine the Electrical Resistivity at Normal State for MgB ₂ Superconductor. Journal of Physics: Conference Series, 2019, 1172, 012028.	0.4	3
6	Study of ac-susceptibility for co-doped MgB2 superconductor with nano-Al2O3 and nano-C at low magnetic field. Intermetallics, 2019, 106, 100-106.	3.9	3
7	Study of dynamic behaviors for nano Fe-doped MgB2 superconductor via ac-susceptibility measurements. Ceramics International, 2019, 45, 1523-1527.	4.8	12
8	Study of activation energy and AC-susceptibility for nano-ZnO doped MgB2 superconductor in presence of varying amplitude of applied field. Journal of Materials Science: Materials in Electronics, 2018, 29, 614-618.	2.2	0
9	Fluctuation-Induced Conductivity of Carbon in Glucose-Doped MgB2 Superconductor. Arabian Journal for Science and Engineering, 2017, 42, 383-388.	3.0	3
10	Calculation of Normalized Pinning Force and Nature of Pinning Mechanism for Nano-Al Doped MgB2 Superconductor. Journal of Modern Materials, 2017, 3, 33-40.	0.4	0
11	Enhancement of critical current density for nano (n)-ZnO doped MgB2 superconductor. Physica C: Superconductivity and Its Applications, 2013, 495, 208-212.	1.2	5
12	Effect of Nano ZnO Doping on the Nature of Pinning of MgB2 Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1547-1552.	1.8	5
13	Comparison of the critical current density of a polycrystalline MgB ₂ superconductor by ac-susceptibility and Bean's model. Physica Scripta, 2011, 84, 065701.	2.5	2
14	Enhancement of activation energy in nano diamond doped MgB2 superconductor. Physica C: Superconductivity and Its Applications, 2010, 470, 369-372.	1.2	5
15	Numerical solution of Bloch–Gruneisen function to determine the contribution of electron–phonon interaction in polycrystalline MgB2 superconductor. Physica C: Superconductivity and Its Applications, 2010, 470, 508-510.	1.2	8
16	Reply to the comment from Mamedov. Physica C: Superconductivity and Its Applications, 2010, 470, 2078.	1.2	0
17	Study of fluctuation induced conductivity on nano diamond doped bulk MgB _{2 superconductor. International Journal of Nano and Biomaterials, 2009, 2, 240.}	0.1	1
18	Effects of Al2O3 Nano-Particles on the Irreversible Properties of MgB2 Superconductor. AIP Conference Proceedings, 2007, , .	0.4	0

#	Article	IF	CITATION
19	The effect of nano-alumina on structural and magnetic properties of MgB ₂ superconductors. Superconductor Science and Technology, 2007, 20, 827-831.	3.5	24
20	Comparisons for the resistivity behaviors of different encapsulated MgB2 samples. Cryogenics, 2007, 47, 497-500.	1.7	0
21	Fluctuation induced conductivity of polycrystalline MgB2 superconductor. Journal of Materials Science, 2007, 42, 6306-6309.	3.7	2