Xiangxi Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022225/publications.pdf Version: 2024-02-01

XIANCYI YE

#	Article	IF	CITATIONS
1	The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corrosion Science, 2016, 106, 249-259.	6.6	101
2	Corrosion of Incoloy 800H alloys with nickel cladding in FLiNaK salts at 850†°C. Corrosion Science, 2018, 133, 349-357.	6.6	50
3	On the possibility of severe corrosion of a Ni-W-Cr alloy in fluoride molten salts at high temperature. Corrosion Science, 2019, 149, 218-225.	6.6	42
4	Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides. Journal of Nuclear Materials, 2018, 503, 116-123.	2.7	39
5	Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 269-276.	5.6	29
6	Influence of grain size on tellurium corrosion behaviors of GH3535 alloy. Corrosion Science, 2019, 148, 110-122.	6.6	29
7	Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy. Journal of Nuclear Materials, 2017, 497, 101-106.	2.7	25
8	Effects of tungsten content on the high-temperature oxidation behavior of Ni-xW-6Cr alloys. Corrosion Science, 2019, 149, 87-99.	6.6	22
9	Welding solidification cracking susceptibility and behavior of a Ni-28W-6Cr alloy. Journal of Materials Science and Technology, 2019, 35, 29-35.	10.7	21
10	Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	3.4	18
11	The Effect of Grain Size and Dislocation Density on the Tensile Properties of Ni-SiCNP Composites During Annealing. Journal of Materials Engineering and Performance, 2016, 25, 726-733.	2.5	15
12	Corrosion behavior of a wear resistant Co-Mo-Cr-Si alloy in molten fluoride salts. Journal of Nuclear Materials, 2020, 542, 152529.	2.7	12
13	Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure. Materials, 2017, 10, 521.	2.9	10
14	Formation of nano-sized M2C carbides in Si-free GH3535 alloy. Scientific Reports, 2018, 8, 8158.	3.3	10
15	Absorption effect of pure nickel on the corrosion behaviors of the GH3535 alloy in tellurium vapor. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	10
16	Theoretical study of fluorine-induced surface segregation of Cr in non-passivated Ni-based alloys. Journal of Applied Physics, 2018, 124, .	2.5	8
17	Theoretical study of the substitutional solute effect on the interstitial carbon in nickel-based alloy. RSC Advances, 2017, 7, 20567-20573.	3.6	8
18	Effect of Zr addition on the microstructure and intermediate-temperature mechanical performance of a Ni–26W–6Cr based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142517.	5.6	8

Xiangxi Ye

#	Article	IF	CITATIONS
19	An approach to improve the oxidation resistance of a Ni-28W-6Cr alloy by hindering the oxygen vacancy-mediated oxidation. Corrosion Science, 2021, 187, 109480.	6.6	7
20	Unexpected effect of hydroxyl radical on tellurium corrosion of the Ni–Mo–Cr–Nb based alloy. Corrosion Science, 2020, 173, 108748.	6.6	6
21	Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles. Journal of Materials Science, 2020, 55, 13372-13388.	3.7	5
22	Effect of Isothermal Aging on Microstructure Evolution of Ni Claddings on Inconel 617. Journal of Materials Engineering and Performance, 2021, 30, 2389-2398.	2.5	5
23	Effect of Surface Decarburization on Corrosion Behavior of GH3535 Alloy in Molten Fluoride Salts. Acta Metallurgica Sinica (English Letters), 2019, 32, 401-412.	2.9	4
24	The Key Role of Ball Milling Time in the Microstructure and Mechanical Property of Ni-TiCNP Composites. Journal of Materials Engineering and Performance, 2016, 25, 5280-5288.	2.5	3
25	Grain-boundary corrosion of nickel-based alloy by synchrotron radiation technology. Surface Innovations, 2019, 7, 278-283.	2.3	3
26	Microstructure and Its Influence on the Mechanical Properties of Ni–28W–6Cr-Based Alloy-Welded Joints by GTAW. Acta Metallurgica Sinica (English Letters), 2019, 32, 1032-1040.	2.9	3
27	Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1811-1820.	4.9	2
28	Highâ€ŧemperature corrosion behavior of Inconel 617 with Ni laddings in molten FLiNaK salt. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 486-496.	1.5	2
29	Microstructure and hardness evolution of ERNiCrMo-3 deposited metal during aging at 750 °C. Journal of Materials Science, 2022, 57, 9415-9426.	3.7	2
30	Intermediate-Temperature Heat Treatment of UNS N10003 Alloy during Cold Working. Journal of Materials Engineering and Performance, 2021, 30, 2355-2364.	2.5	1