

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 2020, 18, 172.	9.1	351
2	Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers, 2017, 9, 401.	4.5	185
3	Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Marine Drugs, 2021, 19, 264.	4.6	167
4	The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials, 2011, 32, 787-796.	11.4	156
5	Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids and Surfaces B: Biointerfaces, 2013, 104, 207-212.	5.0	148
6	Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BioMed Research International, 2015, 2015, 1-6.	1.9	139
7	Intracerebral Transplantation of Adipose-Derived Mesenchymal Stem Cells Alternatively Activates Microglia and Ameliorates Neuropathological Deficits in Alzheimer's Disease Mice. Cell Transplantation, 2013, 22, 113-126.	2.5	116
8	3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials, 2016, 9, 802.	2.9	112
9	Natural Polymers for Organ 3D Bioprinting. Polymers, 2018, 10, 1278.	4.5	112
10	Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer′s disease mice. Neural Regeneration Research, 2014, 9, 798.	3.0	108
11	Mesenchymal Stem Cell–Derived Exosomes: A Promising Biological Tool in Nanomedicine. Frontiers in Pharmacology, 2020, 11, 590470.	3.5	106
12	Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 6180-6187.	7.1	105
13	A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 77A, 277-284.	4.0	104
14	Determination of the domain structure of the <scp>7S</scp> and <scp>11S</scp> globulins from soy proteins by XRD and FTIR. Journal of the Science of Food and Agriculture, 2013, 93, 1687-1691.	3.5	103
15	Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterizationin vitro. Journal of Biomedical Materials Research - Part A, 2006, 77A, 11-18.	4.0	92
16	Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 79A, 36-46.	4.0	92
17	FTIR spectroscopic characterization of soy proteins obtained through AOT reverse micelles. Food Hydrocolloids, 2013, 31, 435-437.	10.7	89
18	Positive charge of chitosan retards blood coagulation on chitosan films. Journal of Biomaterials Applications, 2013, 27, 1032-1045.	2.4	83

#	Article	IF	CITATIONS
19	XRD, SEM, and XPS Analysis of Soybean Protein Powders Obtained Through Extraction Involving Reverse Micelles. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 975-983.	1.9	82
20	Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. Journal of Immunology Research, 2018, 2018, 1-15.	2.2	81
21	Preparation of cross-linked carboxymethyl chitosan for repairing sciatic nerve injury in rats. Biotechnology Letters, 2010, 32, 59-66.	2.2	77
22	The effect of topology of chitosan biomaterials on the differentiation and proliferation of neural stem cells. Acta Biomaterialia, 2010, 6, 3630-3639.	8.3	75
23	Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science: Materials in Medicine, 2011, 22, 1947-1964.	3.6	74
24	Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 791-807.	3.5	70
25	Synergistic Effect of Neural Stem Cells and Olfactory Ensheathing Cells on Repair of Adult Rat Spinal Cord Injury. Cell Transplantation, 2010, 19, 1325-1337.	2.5	68
26	FTIR, XRD and SEM Analysis of Ginger Powders with Different Size. Journal of Food Processing and Preservation, 2015, 39, 2017-2026.	2.0	68
27	Effect of superfine pulverization on properties of Astragalus membranaceus powder. Powder Technology, 2010, 203, 620-625.	4.2	66
28	Schwannâ€like cell differentiation of rat adiposeâ€derived stem cells by indirect coâ€culture with Schwann cells <i>in vitro</i> . Cell Proliferation, 2010, 43, 606-616.	5.3	63
29	Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration. Chemical Engineering Journal, 2018, 345, 566-577.	12.7	63
30	Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles. Food Hydrocolloids, 2018, 74, 358-366.	10.7	63
31	Engineered ZnO and CuO Nanoparticles Ameliorate Morphological and Biochemical Response in Tissue Culture Regenerants of Candyleaf (Stevia rebaudiana). Molecules, 2020, 25, 1356.	3.8	62
32	Physical properties and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve regeneration. Biotechnology Letters, 2007, 29, 1697-1702.	2.2	60
33	Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. Micromachines, 2019, 10, 765.	2.9	59
34	Directed Differentiation of Human Bone Marrow Stromal Cells to Fate-Committed Schwann Cells. Stem Cell Reports, 2017, 9, 1097-1108.	4.8	57
35	Application of superfine pulverization technology in Biomaterial Industry. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 337-343.	5.3	55
36	Stem cell based therapies for spinal cord injury. Tissue and Cell, 2016, 48, 328-333.	2.2	55

#	Article	IF	CITATIONS
37	Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. International Journal of Biological Macromolecules, 2021, 167, 1452-1467.	7.5	55
38	Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioactive Materials, 2021, 6, 2927-2945.	15.6	55
39	Preparation and Characterization of a Multilayer Biomimetic Scaffold for Bone Tissue Engineering. Journal of Biomaterials Applications, 2007, 22, 223-239.	2.4	52
40	Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Medical Hypotheses, 2007, 69, 1234-1237.	1.5	52
41	Progress in organ 3D bioprinting. International Journal of Bioprinting, 2018, 4, 128.	3.4	52
42	Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. Journal of Materials Science: Materials in Medicine, 2011, 22, 2791-2802.	3.6	48
43	Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: A three-year follow-up study. Molecular Medicine Reports, 2016, 14, 4209-4215.	2.4	47
44	Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches. Materials Science and Engineering C, 2020, 116, 111184.	7.3	45
45	An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Molecules, 2020, 25, 756.	3.8	45
46	Surface modification of small intestine submucosa in tissue engineering. International Journal of Energy Production and Management, 2020, 7, 339-348.	3.7	43
47	Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplantation, 2018, 27, 310-324.	2.5	40
48	An improved method for isolating Schwann cells from postnatal rat sciatic nerves. Cell and Tissue Research, 2009, 337, 361-369.	2.9	39
49	Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects. ACS Applied Materials & Interfaces, 2020, 12, 13400-13410.	8.0	39
50	Improved mechanical property and biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for blood vessel tissue engineering by blending with poly(propylene carbonate). European Polymer Journal, 2007, 43, 2975-2986.	5.4	38
51	Human Induced Pluripotent Cell-Derived Sensory Neurons for Fate Commitment of Bone Marrow-Derived Schwann Cells: Implications for Remyelination Therapy. Stem Cells Translational Medicine, 2017, 6, 369-381.	3.3	34
52	MicroRNA-152 attenuates neuroinflammation in intracerebral hemorrhage by inhibiting thioredoxin interacting protein (TXNIP)-mediated NLRP3 inflammasome activation. International Immunopharmacology, 2020, 80, 106141.	3.8	32
53	Surface characterization of ginger powder examined by X-ray photoelectron spectroscopy and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 2010, 79, 494-500.	5.0	31
54	Optimal delivery systems for bone morphogenetic proteins in orthopedic applications should model initial tissue repair structures by using a heparin-incorporated fibrin–fibronectin matrix. Medical Hypotheses, 2008, 71, 374-378.	1.5	30

#	Article	IF	CITATIONS
55	Surface Properties of Chitosan Films Modified with Polycations and Their Effects on the Behavior of PC12 Cells. Journal of Bioactive and Compatible Polymers, 2009, 24, 63-82.	2.1	30
56	Clinical observation of umbilical cord mesenchymal stem cell treatment of severe idiopathic pulmonary fibrosis: A case report. Experimental and Therapeutic Medicine, 2017, 13, 1922-1926.	1.8	30
57	MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase. International Immunopharmacology, 2019, 76, 105887.	3.8	28
58	Collagen nanofiber-covered porous biodegradable carboxymethyl chitosan microcarriers for tissue engineering cartilage. European Polymer Journal, 2008, 44, 2820-2829.	5.4	27
59	Preparation and characterization of chitosan–heparin composite matrices for blood contacting tissue engineering. Biomedical Materials (Bristol), 2010, 5, 055001.	3.3	27
60	Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An upâ€ŧoâ€date review. IET Nanobiotechnology, 2022, 16, 171-189.	3.8	27
61	Surface characterization of 7S and 11S globulin powders from soy protein examined by X-ray photoelectron spectroscopy and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 2011, 86, 260-266.	5.0	26
62	Chitosan nerve conduits seeded with autologous bone marrow mononuclear cells for 30 mm goat peroneal nerve defect. Scientific Reports, 2017, 7, 44002.	3.3	26
63	Gingival mesenchymal stem cellâ€derived exosomes are immunosuppressive in preventing collagenâ€induced arthritis. Journal of Cellular and Molecular Medicine, 2022, 26, 693-708.	3.6	26
64	Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers, 2022, 14, 2184.	4.5	25
65	Evaluation of the chitosan/glycerol-β-phosphate disodium salt hydrogel application in peripheral nerve regeneration. Biomedical Materials (Bristol), 2010, 5, 035003.	3.3	24
66	Appraisal of Comparative Therapeutic Potential of Undoped and Nitrogen-Doped Titanium Dioxide Nanoparticles. Molecules, 2019, 24, 3916.	3.8	24
67	The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease. Brain Stimulation, 2019, 12, 161-174.	1.6	24
68	Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomaterialia, 2021, 134, 160-176.	8.3	24
69	Cell therapy for cerebral hemorrhage: Five year follow-up report. Experimental and Therapeutic Medicine, 2016, 12, 3535-3540.	1.8	23
70	Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomaterialia, 2020, 115, 235-249.	8.3	23
71	Polymeric Micelles in Cancer Immunotherapy. Molecules, 2021, 26, 1220.	3.8	22
72	Phosphorylation of tau protein over time in rats subjected to transient brain ischemia. Neural Regeneration Research, 2013, 8, 3173-82.	3.0	22

#	Article	IF	CITATIONS
73	Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Marine Drugs, 2022, 20, 372.	4.6	22
74	Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Molecular Medicine Reports, 2017, 16, 4455-4462.	2.4	21
75	Intravenous infusion umbilical cord-derived mesenchymal stem cell in primary immune thrombocytopenia: A two-year follow-up. Experimental and Therapeutic Medicine, 2017, 13, 2255-2258.	1.8	20
76	The 2021 yearbook of Neurorestoratology. Journal of Neurorestoratology, 2022, 10, 100008.	2.5	20
77	Fiber-Based chitosan tubular scaffolds for soft tissue engineering: Fabrication and in vitro evaluation. Tsinghua Science and Technology, 2005, 10, 449-453.	6.1	19
78	The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Research and Therapy, 2020, 11, 338.	5.5	19
79	Neural Stem Cell Affinity of Chitosan and Feasibility of Chitosan-Based Porous Conduits as Scaffolds for Nerve Tissue Engineering*. Tsinghua Science and Technology, 2006, 11, 415-420.	6.1	18
80	Surface structure and volatile characteristic of peanut proteins obtained through AOT reverse micelles. Colloids and Surfaces B: Biointerfaces, 2019, 173, 860-868.	5.0	18
81	Preparation and evaluation of acellular sheep periostea for guided bone regeneration. Journal of Biomedical Materials Research - Part A, 2020, 108, 19-29.	4.0	18
82	Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair. Neurotherapeutics, 2020, 17, 356-370.	4.4	18
83	Nanoparticles in peripheral nerve regeneration: A mini review. Journal of Neurorestoratology, 2022, 10, 1-12.	2.5	18
84	MicroRNA-338 and microRNA-21 co-transfection for the treatment of rat sciatic nerve injury. Neurological Sciences, 2016, 37, 883-890.	1.9	17
85	Functional characterization of human umbilical cord-derived mesenchymal stem cells for treatment of systolic heart failure. Experimental and Therapeutic Medicine, 2016, 12, 3328-3332.	1.8	17
86	Protective effects of extract of Ginkgo biloba (EGb 761) on nerve cells after spinal cord injury in rats. Spinal Cord, 2006, 44, 662-667.	1.9	16
87	Decreased expression of microRNA-107 predicts poorer prognosis in glioma. Tumor Biology, 2015, 36, 4461-4466.	1.8	16
88	Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury. Neural Regeneration Research, 2013, 8, 2449-57.	3.0	16
89	Effect of reverse micelle on conformation of soy globulins: A Raman study. Food Chemistry, 2009, 116, 176-182.	8.2	15
90	A novel basic fibroblast growth factor delivery system fabricated with heparin-incorporated fibrin–fibronectin matrices for repairing rat sciatic nerve disruptions. Biotechnology Letters, 2010, 32, 585-591.	2.2	15

#	Article	IF	CITATIONS
91	The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein. Journal of Food Science and Technology, 2012, 51, 2851-6.	2.8	14
92	<i>In vitro</i> and <i>in vivo</i> biocompatibility study on acellular sheep periosteum for guided bone regeneration. Biomedical Materials (Bristol), 2020, 15, 015013.	3.3	14
93	α-Lipoic Acid Maintains Brain Glucose Metabolism via BDNF/TrkB/HIF-1α Signaling Pathway in P301S Mice. Frontiers in Aging Neuroscience, 2020, 12, 262.	3.4	14
94	Amino acid, structure and antioxidant properties of <i>Haematococcus pluvialis</i> protein hydrolysates produced by different proteases. International Journal of Food Science and Technology, 2021, 56, 185-195.	2.7	14
95	Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Current Neuropharmacology, 2021, 19, 2152-2163.	2.9	14
96	In vitro cytotoxicity and protein drug release properties of chitosan/heparin microspheres. Tsinghua Science and Technology, 2007, 12, 361-365.	6.1	13
97	Effect of pressure grinding technology on the physicochemical and antioxidant properties of <i>Tremella aurantialba</i> powder. Journal of Food Processing and Preservation, 2018, 42, e13833.	2.0	13
98	Sodium orthovanadate induces the apoptosis of SH-SY5Y cells by inhibiting PIWIL2. Molecular Medicine Reports, 2016, 13, 874-880.	2.4	12
99	Transplantation of miRNAâ€34a overexpressing adiposeâ€derived stem cell enhances rat nerve regeneration. Wound Repair and Regeneration, 2016, 24, 542-550.	3.0	12
100	Tracing Carbon Nanotubes (CNTs) in Rat Peripheral Nerve Regenerated with Conductive Conduits Composed of Poly(lactide- <i>co</i> -glycolide) and Fluorescent CNTs. ACS Biomaterials Science and Engineering, 2020, 6, 6344-6355.	5.2	12
101	Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. Journal of Leukocyte Biology, 2021, 109, 425-436.	3.3	12
102	MicroRNA-150 Modulates Adipogenic Differentiation of Adipose-Derived Stem Cells by Targeting Notch3. Stem Cells International, 2019, 2019, 1-12.	2.5	11
103	Exposure to hydroxyapatite nanoparticles enhances Toll-like receptor 4 signal transduction and overcomes endotoxin tolerance in vitro and in vivo. Acta Biomaterialia, 2021, 135, 650-662.	8.3	11
104	Standards of clinical-grade mesenchymal stromal cell preparation and quality control (2020 China) Tj ETQq0 0 () rgBT_/Ov(erlock 10 Tf 5
105	Fabrication and characterization of chitosan nerve conduits with microtubular architectures. Tsinghua Science and Technology, 2005, 10, 435-438.	6.1	9
106	Conformation Analysis of Soybean Protein in Reverse Micelles by Circular Dichroism Spectroscopy. Food Analytical Methods, 2011, 4, 268-275.	2.6	9
107	Fabrication and evaluation of an optimized xenogenic decellularized costal cartilage graft: preclinical studies of a novel biocompatible prosthesis for rhinoplasty. International Journal of Energy Production and Management, 2021, 8, rbab052.	3.7	8

108Research and application progress on dural substitutes. Journal of Neurorestoratology, 2019, 7,
161-170.2.58

#	Article	IF	CITATIONS
109	Progress in the Research and Development of Nerve Conduits. Translational Neuroscience and Clinics, 2015, 1, 97-101.	0.1	7
110	Progress of nerve bridges in the treatment of peripheral nerve disruptions. Journal of Neurorestoratology, 0, Volume 4, 107-113.	2.5	6
111	Intraluminal Guiding Structure of Nerve Conduits for Peripheral Nerve Regeneration. Science of Advanced Materials, 2020, 12, 56-65.	0.7	6
112	Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regeneration Research, 2015, 10, 1669.	3.0	6
113	Endoscopic transaqueductal removal of fourth ventricular neurocysticercosis: report of three cases. Turkish Neurosurgery, 2014, 25, 488-92.	0.2	6
114	Proliferation and Differentiation of MC 3T3-E1 Cells Cultured on Nanohydroxyapatite/chitosan Composite Scaffolds. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2007, 23, 262-267.	0.2	5
115	Standard Recommendations for the Application of Chinese Clinical Cell Therapy for Neurorestoration (2012). Cell Transplantation, 2013, 22, 5-10.	2.5	4
116	Manufacture and preliminary evaluation of acellular tooth roots as allografts for alveolar ridge augmentation. Journal of Biomedical Materials Research - Part A, 2022, 110, 122-130.	4.0	4
117	Myelin ultrastructure of sciatic nerve in rat experimental autoimmune neuritis model and its correlation with associated protein expression. International Journal of Clinical and Experimental Pathology, 2015, 8, 7849-58.	0.5	4
118	Klotho functionalization on vascular graft for improved patency and endothelialization. Materials Science and Engineering C, 2022, 133, 112630.	7.3	4
119	Lentiviral vectors enveloped with rabies virus glycoprotein can be used as a novel retrograde tracer to assess nerve recovery in rat sciatic nerve injury models. Cell and Tissue Research, 2014, 355, 255-266.	2.9	3
120	Interleukin-17A in Alzheimer's disease: recent advances and controversies. Current Neuropharmacology, 2021, 19, .	2.9	3
121	Combination of Acellular Nerve Allograft and Human Umbilical Wharton Jell Stem Cells to Bridge Rat Femoral Nerve Defect. Journal of Biomaterials and Tissue Engineering, 2016, 6, 79-84.	0.1	3
122	PLCL vascular external sheath carrying prednisone for improving patency rate of the vein graft. Tissue Engineering - Part A, 2021, , .	3.1	3
123	Theranostic Applications of Nanobiotechnology in Cancer. , 2019, , 277-295.		3
124	Antimicrobial activity of AOT-isooctane reverse micelle as a bioseparation and biocatalysis tool. Chemical Speciation and Bioavailability, 2008, 20, 191-197.	2.0	2
125	Standards for the culture and quality control of umbilical cord mesenchymal stromal cells for neurorestorative clinical application (2017). Journal of Neurorestoratology, 2017, Volume 6, 11-15.	2.5	2
126	Combined use of Y-tube conduits with human umbilical cord stem cells for repairing nerve bifurcation defects. Neural Regeneration Research, 2016, 11, 664.	3.0	2

#	Article	IF	CITATIONS
127	Comparison of Different Microsurgery Methods for Trigeminal Neuralgia. Translational Neuroscience and Clinics, 2016, 2, 183-187.	0.1	2
128	Controlled Release of Nerve Growth Factor and Basic Fibroblast Growth Factor Combined with Small-Gap Anastomosis Enhances Sciatic Nerve Regeneration. Translational Neuroscience and Clinics, 2015, 1, 25-30.	0.1	1
129	Effects of microRNA-338 Transfection into Sciatic Nerve on Rats with Experimental Autoimmune Neuritis. Journal of Molecular Neuroscience, 2021, 71, 713-723.	2.3	1
130	Progress in the research and development of nerve conduits. Translational Neuroscience and Clinics, 2015, 1, 97-101.	0.1	1
131	Amyloid precursor protein-mediated modulation of capacitive calcium entry. Science Bulletin, 2012, 57, 4552-4559.	1.7	0
132	Neurorestoratologic Strategies and Mechanisms in the Nervous System. BioMed Research International, 2015, 2015, 1-1.	1.9	0
133	17-Allylamino-demethoxygeldanamycin Used Alone or in Combination with Sodium Orthovanadate Promotes Apoptosis and Inhibits Invasion of SH-SY5Y Cells by Modulating PIWIL2. BioMed Research International, 2020, 2020, 1-9.	1.9	0
134	Controlled release of nerve growth factor and basic fibroblast growth factor combined with small-gap anastomosis enhances sciatic nerve regeneration. Translational Neuroscience and Clinics, 2015, 1, 25-30.	0.1	0
135	iPSC-derived sensory neurons for fate commitment of bone marrow-derived schwann cells: Implification for re-myelination therapy. Frontiers in Cellular Neuroscience, 0, 10, .	3.7	0
136	Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects. SSRN Electronic Journal, 0, , .	0.4	0
137	<i>A Special Issue on</i> Advanced Materials for Biomedical Applications—Part 1. Science of Advanced Materials, 2019, 11, 1349-1352.	0.7	0
138	Research Progress of Tissue-Engineered Cartilage in Repairing Cartilage Defects. Science of Advanced Materials, 2020, 12, 66-74.	0.7	0
139	Biomaterials for Neurotherapeutics: From Lab Discovery to Clinical Application. Current Neuropharmacology, 2021, 19, 2108-2109.	2.9	0