
Rodolfo Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3022139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2006, 65, 1198-1201.	0.5	437
2	Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews Rheumatology, 2017, 13, 100-109.	3.5	371
3	Obesity, Fat Mass and Immune System: Role for Leptin. Frontiers in Physiology, 2018, 9, 640.	1.3	284
4	What's new in our understanding of the role of adipokines in rheumatic diseases?. Nature Reviews Rheumatology, 2011, 7, 528-536.	3.5	254
5	A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis and Cartilage, 2008, 16, 1101-1109.	0.6	241
6	Towards a pro-inflammatory and immunomodulatory emerging role of leptin. Rheumatology, 2006, 45, 944-950.	0.9	224
7	The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers, 2015, 20, 565-571.	0.9	188
8	TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nature Reviews Rheumatology, 2015, 11, 159-170.	3.5	188
9	Adipokines as novel modulators of lipid metabolism. Trends in Biochemical Sciences, 2009, 34, 500-510.	3.7	173
10	Leptin beyond body weight regulation—Current concepts concerning its role in immune function and inflammation. Cellular Immunology, 2008, 252, 139-145.	1.4	168
11	Adipokines: Biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors, 2011, 37, 413-420.	2.6	162
12	Adipokines and inflammation: is it a question of weight?. British Journal of Pharmacology, 2018, 175, 1569-1579.	2.7	119
13	Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochemical Pharmacology, 2019, 165, 196-206.	2.0	119
14	Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Annals of the Rheumatic Diseases, 2011, 70, 551-559.	0.5	108
15	Adipokines and Osteoarthritis: Novel Molecules Involved in the Pathogenesis and Progression of Disease. Arthritis, 2011, 2011, 1-8.	2.0	94
16	Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage. International Journal of Molecular Sciences, 2013, 14, 20793-20808.	1.8	89
17	Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis and Rheumatism, 2010, 62, 1675-1682.	6.7	88
18	Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link?. International Iournal of Molecular Sciences. 2019. 20. 2030.	1.8	84

#	Article	IF	CITATIONS
19	Adiponectin and Leptin Induce VCAM-1 Expression in Human and Murine Chondrocytes. PLoS ONE, 2012, 7, e52533.	1.1	84
20	Adipokines in the skeleton: influence on cartilage function and joint degenerative diseases. Journal of Molecular Endocrinology, 2009, 43, 11-18.	1.1	83
21	Leptin: A metabolic hormone that functions like a proinflammatory adipokine. Drug News and Perspectives, 2006, 19, 21.	1.9	83
22	The Increase in O-Linked N-Acetylglucosamine Protein Modification Stimulates Chondrogenic Differentiation Both in Vitro and in Vivo. Journal of Biological Chemistry, 2012, 287, 33615-33628.	1.6	80
23	Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sciences, 2012, 91, 1229-1235.	2.0	80
24	Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research, 2018, 36, 594-604.	1.2	76
25	Adiponectin and leptin increase IL-8 production in human chondrocytes. Annals of the Rheumatic Diseases, 2011, 70, 2052-2054.	0.5	75
26	Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. Stem Cells, 2015, 33, 3266-3280.	1.4	72
27	At the crossroad between immunity and metabolism: focus on leptin. Expert Review of Clinical Immunology, 2010, 6, 801-808.	1.3	71
28	Long noncoding RNA <i>ROCR</i> contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development (Cambridge), 2017, 144, 4510-4521.	1.2	70
29	Progranulin as a biomarker and potential therapeutic agent. Drug Discovery Today, 2017, 22, 1557-1564.	3.2	68
30	Butyrate Modulates Inflammation in Chondrocytes via GPR43 Receptor. Cellular Physiology and Biochemistry, 2018, 51, 228-243.	1.1	65
31	Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-κB Pathways. Cellular Physiology and Biochemistry, 2018, 49, 2414-2426.	1.1	58
32	Oleocanthal Inhibits Proliferation and MIP-1α Expression in Human Multiple Myeloma Cells. Current Medicinal Chemistry, 2013, 20, 2467-2475.	1.2	58
33	Beyond Fat Mass: Exploring the Role of Adipokines in Rheumatic Diseases. Scientific World Journal, The, 2011, 11, 1932-1947.	0.8	56
34	Role of Toll-Like Receptor 4 on Osteoblast Metabolism and Function. Frontiers in Physiology, 2018, 9, 504.	1.3	55
35	Role of Adipokines in Atherosclerosis: Interferences with Cardiovascular Complications in Rheumatic Diseases. Mediators of Inflammation, 2012, 2012, 1-14.	1.4	54
36	SDF-1 signaling: a promising target in rheumatic diseases. Expert Opinion on Therapeutic Targets, 2014, 18. 1077-1087.	1.5	50

#	Article	IF	CITATIONS
37	Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sciences, 2007, 81, 1452-1460.	2.0	47
38	Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2019, 67, 3845-3853.	2.4	45
39	Adipokines: novel players in rheumatic diseases. Discovery Medicine, 2013, 15, 73-83.	0.5	43
40	SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways. PLoS ONE, 2015, 10, e0135979.	1.1	42
41	Expression and modulation of ghrelin <i>O</i> â€acyltransferase in cultured chondrocytes. Arthritis and Rheumatism, 2009, 60, 1704-1709.	6.7	39
42	Choosing the right chondrocyte cell line: Focus on nitric oxide. Journal of Orthopaedic Research, 2015, 33, 1784-1788.	1.2	39
43	Visfatin Connection: Present and Future in Osteoarthritis and Osteoporosis. Journal of Clinical Medicine, 2019, 8, 1178.	1.0	38
44	6â€ S hogaol inhibits chondrocytes' innate immune responses and cathepsinâ€ <scp>K</scp> activity. Molecular Nutrition and Food Research, 2014, 58, 256-266.	1.5	37
45	The novel adipokine progranulin counteracts IL-1 and TLR4-driven inflammatory response in human and murine chondrocytes via TNFR1. Scientific Reports, 2016, 6, 20356.	1.6	34
46	Adipokines induce pro-inflammatory factors in activated Cd4+ T cells from osteoarthritis patient. Journal of Orthopaedic Research, 2017, 35, 1299-1303.	1.2	30
47	E74â€like factor 3 and nuclear factorâ€̂ºB regulate lipocalinâ€2 expression in chondrocytes. Journal of Physiology, 2016, 594, 6133-6146.	1.3	29
48	Hypercholesterolemia boosts joint destruction in chronic arthritis. An experimental model aggravated by foam macrophage infiltration. Arthritis Research and Therapy, 2013, 15, R81.	1.6	27
49	Identification of Novel Adipokines in the Joint. Differential Expression in Healthy and Osteoarthritis Tissues. PLoS ONE, 2015, 10, e0123601.	1.1	26
50	Nitric oxide boosts TLRâ€4 mediated lipocalin 2 expression in chondrocytes. Journal of Orthopaedic Research, 2013, 31, 1046-1052.	1.2	25
51	The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Scientific Reports, 2016, 6, 29243.	1.6	25
52	Visfatin as a therapeutic target for rheumatoid arthritis. Expert Opinion on Therapeutic Targets, 2019, 23, 607-618.	1.5	25
53	An Update on the Role of Leptin in the Immuno-Metabolism of Cartilage. International Journal of Molecular Sciences, 2021, 22, 2411.	1.8	23
54	Effects of PTH [1-34] on synoviopathy in an experimental model of osteoarthritis preceded by osteoporosis. Osteoarthritis and Cartilage, 2012, 20, 1619-1630.	0.6	22

#	Article	IF	CITATIONS
55	Cardiometabolic comorbidities and rheumatic diseases: Focus on the role of fat mass and adipokines. Arthritis Care and Research, 2011, 63, 1083-1090.	1.5	20
56	Amitriptyline blocks innate immune responses mediated by tollâ€like receptor 4 and ILâ€1 receptor: Preclinical and clinical evidence in osteoarthritis and gout. British Journal of Pharmacology, 2022, 179, 270-286.	2.7	20
57	DNA hypomethylation during MSC chondrogenesis occurs predominantly at enhancer regions. Scientific Reports, 2020, 10, 1169.	1.6	18
58	Endogenous cannabinoid anandamide impairs cell growth and induces apoptosis in chondrocytes. Journal of Orthopaedic Research, 2014, 32, 1137-1146.	1.2	17
59	E74-Like Factor (ELF3) and Leptin, a Novel Loop Between Obesity and Inflammation Perpetuating a Pro-Catabolic State in Cartilage. Cellular Physiology and Biochemistry, 2018, 45, 2401-2410.	1.1	15
60	Early outcomes of locked noncemented stems for the management of proximal humeral fractures: a comparative study. Journal of Shoulder and Elbow Surgery, 2019, 28, 48-55.	1.2	15
61	Corticoids synergize with IL-1 in the induction of LCN2. Osteoarthritis and Cartilage, 2017, 25, 1172-1178.	0.6	14
62	Novel factors as therapeutic targets to treat diabetes. Focus on leptin and ghrelin. Expert Opinion on Therapeutic Targets, 2009, 13, 583-591.	1.5	13
63	Monomeric C reactive protein (mCRP) regulates inflammatory responses in human and mouse chondrocytes. Laboratory Investigation, 2021, 101, 1550-1560.	1.7	12
64	IL-36α: a novel cytokine involved in the catabolic and inflammatory response in chondrocytes. Scientific Reports, 2015, 5, 16674.	1.6	11
65	Caffeine, a Risk Factor for Osteoarthritis and Longitudinal Bone Growth Inhibition. Journal of Clinical Medicine, 2020, 9, 1163.	1.0	10
66	Unlike ghrelin, obestatin does not exert any relevant activity in chondrocytes. Annals of the Rheumatic Diseases, 2007, 66, 1399-1400.	0.5	9
67	In vitro response of bone marrow mesenchymal stem cells (hBMSCs) on laser-induced periodic surface structures for hard tissue replacement: Comparison between tantalum and titanium. Optics and Lasers in Engineering, 2018, 111, 34-41.	2.0	9
68	Pollutants make rheumatic diseases worse: Facts on polychlorinated biphenyls (PCBs) exposure and rheumatic diseases. Life Sciences, 2016, 157, 140-144.	2.0	7
69	Dickkopf-3 (DKK3) Signaling in IL-1α-Challenged Chondrocytes: Involvement of the NF-κB Pathway. Cartilage, 2020, , 194760352093332.	1.4	7
70	Aromatase expression in human chondrocytes: An induction due to culture. Maturitas, 2016, 85, 27-33.	1.0	6
71	Expression and modulation of adipolin/C1qdc2: a novel adipokine in human and murine ATDC-5 chondrocyte cell line. Annals of the Rheumatic Diseases, 2013, 72, 140-142.	0.5	3
72	Vitamin D levels in a pediatric population of a primary care centre: a public health problem?. BMC Research Notes, 2018, 11, 801.	0.6	3

#	Article	IF	CITATIONS
73	Evaluation of Virola oleifera activity in musculoskeletal pathologies: Inhibition of human multiple myeloma cells proliferation and combination therapy with dexamethasone or bortezomib. Journal of Ethnopharmacology, 2021, 272, 113932.	2.0	3
74	Management of Open Fracture. , 2018, , .		2
75	Visfatin: a new player in rheumatic diseases. Immunometabolism, 2013, 1, .	6.0	1
76	In Vitro Evaluation of Laser-Induced Periodic Surface Structures on New Zirconia/Tantalum Biocermet for Hard-Tissue Replacement. , 0, , .		1
77	Obesity and Osteoarthritis: Are Adipokines Bridging Metabolism, Inflammation, and Biomechanics?. , 2020, , 99-115.		1
78	O-Glcnac protein modification stimulates chondrogenesis in vitro and chondrocyte hypertrophy in mouse. Annals of the Rheumatic Diseases, 2012, 71, A71.1-A71.	0.5	0
79	6-Shogaol inhibits cathepsin-K activity and has anticatabolic and anti-inflammatory properties in stimulated chondrocytes. Annals of the Rheumatic Diseases, 2012, 71, A68.2-A68.	0.5	Ο
80	Leptin, a railroad switch enabling crossover signals among inflammation, immunity and metabolism. Adipobiology, 2014, 2, 33.	0.1	0
81	Chapter 3. One Receptor for Multiple Pathways: Focus on Leptin Signaling. RSC Drug Discovery Series, 2011, , 44-56.	0.2	Ο
82	Functions of Adipose Tissue and Adipokines in Health and Disease. , 0, , .		0
83	Adipokines and Systemic Rheumatic Diseases: Linking Inflammation, Immunity and Metabolism. , 0, , .		0
84	Adipokines as biomarkers of rheumatic diseases. Drugs of the Future, 2012, 37, 591.	0.0	0
85	Adipokines, Molecular Players at the Crossroad Between Inflammation and Oxidative Stress: Role in Arthropathies. , 2013, , 67-88.		0