Bernardo Zuccarello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3021667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mode I translaminar fracture toughness of high performance laminated biocomposites reinforced by sisal fibers: Accurate measurement approach and lay-up effects. Composites Science and Technology, 2022, 217, 109089.	7.8	11
2	Rapid evaluation of notch stress intensity factors using the peak stress method with 3D tetrahedral finite element models: Comparison of commercial codes. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1005-1034.	3.4	16
3	Basalt Fiber Hybridization Effects on High-Performance Sisal-Reinforced Biocomposites. Polymers, 2022, 14, 1457.	4.5	5
4	Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding. Polymers, 2022, 14, 154.	4.5	8
5	New Concept in Bioderived Composites: Biochar as Toughening Agent for Improving Performances and Durability of Agave-Based Epoxy Biocomposites. Polymers, 2021, 13, 198.	4.5	13
6	Influence of the anisotropy of sisal fibers on the mechanical properties of high performance unidirectional biocomposite lamina and micromechanical models. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106320.	7.6	13
7	Enhancement of Static and Fatigue Strength of Short Sisal Fiber Biocomposites by Low Fraction Nanotubes. Applied Composite Materials, 2021, 28, 91-112.	2.5	6
8	Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers. Composite Structures, 2020, 253, 112744.	5.8	35
9	Static and Dynamic Mechanical Properties of Eco-friendly Polymer Composites. , 2019, , 259-292.		5
10	Random short sisal fiber biocomposites: Optimal manufacturing process and reliable theoretical models. Materials and Design, 2018, 149, 87-100.	7.0	27
11	Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Composite Structures, 2018, 194, 575-583.	5.8	37
12	Numerical model for the characterization of biocomposites reinforced by sisal fibres. Procedia Structural Integrity, 2018, 8, 517-525.	0.8	18
13	Implementation of eco-sustainable biocomposite materials reinforced by optimized agave fibers. Procedia Structural Integrity, 2018, 8, 526-538.	0.8	25
14	Rapid evaluation of notch stress intensity factors using the peak stress method: Comparison of commercial finite element codes for a range of mesh patterns. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1044-1063.	3.4	41
15	Static strength and fatigue life of optimized hybrid single lap aluminum–CFRP structural joints. Journal of Adhesion, 2018, 94, 501-528.	3.0	12
16	Toward high performance renewable agave reinforced biocomposites: Optimization of fiber performance and fiber-matrix adhesion analysis. Composites Part B: Engineering, 2017, 122, 109-120.	12.0	32
17	Experimental analysis and micromechanical models of high performance renewable agave reinforced biocomposites. Composites Part B: Engineering, 2017, 119, 141-152.	12.0	36
18	Error and Uncertainty Analysis of Non-Uniform Residual Stress Evaluation by Using the Ring-Core Method. Experimental Mechanics, 2016, 56, 1531-1546.	2.0	10

Bernardo Zuccarello

#	Article	IF	CITATIONS
19	Analysis of the accuracy of fiber-optic strain transducers installed by using composite smart patches. Journal of Strain Analysis for Engineering Design, 2015, 50, 373-385.	1.8	4
20	Numerical experimental analysis of hybrid double lap aluminum-CFRP joints. Composites Part B: Engineering, 2015, 71, 28-39.	12.0	88
21	Analysis and optimization of hybrid double lap aluminum-GFRP joints. Composite Structures, 2014, 116, 682-693.	5.8	45
22	Numerical-experimental Method for the Analysis of Residual Stresses in Cold-expanded Holes. Experimental Mechanics, 2013, 53, 673-686.	2.0	9
23	Toward a design method for metal-composite co-cured joints based on the C-SIFs. Composites Part B: Engineering, 2013, 45, 631-643.	12.0	16
24	The Reinforcement Effect of Strain Gauges Embedded in Low Modulus Materials. Strain, 2013, 49, 366-376.	2.4	8
25	Error and Uncertainty Analysis of the Residual Stresses Computed by Using the Hole Drilling Method. Strain, 2011, 47, 301-312.	2.4	27
26	Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition. Experimental Mechanics, 2011, 51, 1123-1134.	2.0	98
27	Fatigue delamination experiments on GFRP and CFRP specimens under single and mixed fracture modes. Procedia Engineering, 2011, 10, 1791-1796.	1.2	12
28	Influence of the Resin Layer Thickness at the Interface of Hybrid Metal-composite Co-cured Joints. Procedia Engineering, 2011, 10, 3775-3786.	1.2	2
29	Measuring Multiple Residual-Stress Components using the Contour Method and Multiple Cuts. Experimental Mechanics, 2010, 50, 187-194.	2.0	124
30	Local reinforcement effect of embedded strain gauges. EPJ Web of Conferences, 2010, 6, 13003.	0.3	6
31	Known Residual Stress Specimens Using Opposed Indentation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	1.4	24
32	Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels. Composite Structures, 2007, 81, 575-586.	5.8	85
33	Limitation of carrier fringe methods in digital photoelasticity. Optics and Lasers in Engineering, 2007, 45, 631-636.	3.8	17
34	A novel frequency domain method for predicting fatigue crack growth under wide band random loading. International Journal of Fatigue, 2007, 29, 1065-1079.	5.7	11
35	Stiffness and Reinforcement Effect of Electrical Resistance Strain Gauges. Strain, 2007, 43, 299-305.	2.4	20
36	An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading. Mechanics of Composite Materials, 2007, 43, 359-376.	1.4	15

Bernardo Zuccarello

#	Article	IF	CITATIONS
37	Residual Stress Analysis of Orthotropic Materials by the Through-hole Drilling Method. Experimental Mechanics, 2007, 47, 217-236.	2.0	39
38	On the effects of a crack propagating toward the interface of a bimaterial system. Engineering Fracture Mechanics, 2006, 73, 1264-1277.	4.3	21
39	An analysis of through-thickness residual stresses in aluminium FSW butt joints. International Journal of Machine Tools and Manufacture, 2006, 46, 611-619.	13.4	60
40	Complete Isochromatic Fringe-order Analysis in Digital Photoelasticity by Fourier Transform and Load Stepping. Strain, 2005, 41, 49-58.	2.4	2
41	Local Reinforcement Effect of a Strain Gauge Installation on Low Modulus Materials. Journal of Strain Analysis for Engineering Design, 2005, 40, 643-653.	1.8	54
42	Use of automated photoelasticity to determine stress intensity factors of bimaterial joints. Journal of Strain Analysis for Engineering Design, 2005, 40, 785-800.	1.8	5
43	On the Stiffness and the Reinforcement Effect of Electrical Resistance Strain Gauges. Applied Mechanics and Materials, 2005, 3-4, 349-354.	0.2	2
44	Fatigue life prediction under wide band random loading. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 1183-1195.	3.4	70
45	Full field automated evaluation of the quarter wave plate retardation by phase stepping technique. Optics and Lasers in Engineering, 2002, 37, 389-400.	3.8	16
46	The influence of the quarter wave plates in automated photoelasticity. Optics and Lasers in Engineering, 2002, 38, 31-56.	3.8	24
47	Photoelastic stress pattern analysis using Fourier transform with carrier fringes: influence of quarter-wave plate error. Optics and Lasers in Engineering, 2002, 37, 401-416.	3.8	14
48	Limitation of fourier transform photoelasticity: Influence of isoclinics. Experimental Mechanics, 2000, 40, 384-392.	2.0	16
49	On the Characterization of Dynamic Properties of Random Processes by Spectral Parameters. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 519-526.	2.2	24
50	Optimal calculation steps for the evaluation of residual stress by the incremental hole-drilling method. Experimental Mechanics, 1999, 39, 117-124.	2.0	78
51	On the estimation of the fatigue cycle distribution from spectral density data. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213, 819-831.	2.1	28
52	A new calculation procedure for non-uniform residual stress analysis by the hole-drilling method. Journal of Strain Analysis for Engineering Design, 1998, 33, 27-37.	1.8	12
53	MODIFICATION OF THE RECTILINEAR GROOVE METHOD FOR THE ANALYSIS OF UNIFORM RESIDUAL STRESSES. Experimental Techniques, 1997, 21, 25-29.	1.5	11
54	Effect of plasticity on the residual stress measurement using the groove method. Strain, 1996, 32, 97-104.	2.4	10

#	Article	IF	CITATIONS
55	Optimization of depth increment distribution in the ring-core method. Journal of Strain Analysis for Engineering Design, 1996, 31, 251-258.	1.8	26
56	Determination of Nonuniform Residual Stresses Using the Ring-Core Method. Journal of Engineering Materials and Technology, Transactions of the ASME, 1996, 118, 224-228.	1.4	46
57	Use of Hybrid Methods (Hole-Drilling and Ring-Core) for the Analysis of the RS on Welded Joints. , 0, , .		0