Xue-Feng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3021631/publications.pdf

Version: 2024-02-01

87 4,967 34 papers citations h-index

34 70
h-index g-index

88 88
all docs docs citations

88 times ranked 3028 citing authors

#	Article	IF	CITATIONS
1	Experimental demonstration of anomalous Floquet topological insulator for sound. Nature Communications, 2016, 7, 13368.	12.8	344
2	Acoustic focusing by coiling up space. Applied Physics Letters, 2012, 101, .	3.3	297
3	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:mrow></mml:math>-Symmetric Acoustics. Physical Review X, 2014. 4</pre>	8.9	295
4	Acoustic rainbow trapping. Scientific Reports, 2013, 3, .	3.3	240
5	Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nature Communications, 2016, 7, 11731.	12.8	236
6	Anti–parity-time symmetry in diffusive systems. Science, 2019, 364, 170-173.	12.6	217
7	Experimental Demonstration of Acoustic Chern Insulators. Physical Review Letters, 2019, 122, 014302.	7.8	205
8	Generation of acoustic self-bending and bottle beams by phase engineering. Nature Communications, 2014, 5, 4316.	12.8	189
9	Acoustic Cloaking by a Superlens with Single-Negative Materials. Physical Review Letters, 2011, 106, 014301.	7.8	181
10	Thermal meta-device in analogue of zero-index photonics. Nature Materials, 2019, 18, 48-54.	27.5	172
11	Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature Communications, 2018, 9, 1632.	12.8	150
12	One-way invisible cloak using parity-time symmetric transformation optics. Optics Letters, 2013, 38, 2821.	3.3	136
13	Demonstration of a large-scale optical exceptional point structure. Optics Express, 2014, 22, 1760.	3.4	134
14	One-way mode transmission in one-dimensional phononic crystal plates. Journal of Applied Physics, 2010, 108, .	2.5	123
15	Observation of acoustic Dirac-like cone and double zero refractive index. Nature Communications, 2017, 8, 14871.	12.8	123
16	Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal. Physical Review Letters, 2018, 120, 124502.	7.8	122
17	Roadmap on STIRAP applications. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 202001.	1.5	108
18	Revealing the missing dimension at an exceptional point. Nature Physics, 2020, 16, 571-578.	16.7	100

#	Article	IF	Citations
19	Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials. Physical Review Letters, 2018, 120, 133901.	7.8	92
20	Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nature Communications, 2019, 10, 3411.	12.8	81
21	Observation of elastic topological states in soft materials. Nature Communications, 2018, 9, 1370.	12.8	78
22	A broadband acoustic omnidirectional absorber comprising positive-index materials. Applied Physics Letters, 2011, 99, .	3.3	72
23	Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances. Physical Review Applied, 2016, 5, .	3.8	55
24	Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface. AIP Advances, $2017, 7, .$	1.3	50
25	One-Way Localized Adiabatic Passage in an Acoustic System. Physical Review Letters, 2019, 122, 094501.	7.8	50
26	Meta-neural-network for real-time and passive deep-learning-based object recognition. Nature Communications, 2020, 11, 6309.	12.8	49
27	3D Printed Metaâ€Helmet for Wideâ€Angle Thermal Camouflages. Advanced Functional Materials, 2020, 30, 2002061.	14.9	46
28	Low-loss and broadband anomalous Floquet topological insulator for airborne sound. Applied Physics Letters, $2017,110,110$	3.3	45
29	A Continuously Tunable Solidâ€Like Convective Thermal Metadevice on the Reciprocal Line. Advanced Materials, 2020, 32, e2003823.	21.0	45
30	Hollowâ€Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft fiber/Rigid Bead Networks. Advanced Functional Materials, 2018, 28, 1801127.	14.9	42
31	Controlling Sound in Non-Hermitian Acoustic Systems. Physical Review Applied, 2021, 16, .	3.8	41
32	Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Science Advances, 2021, 7, eabj1198.	10.3	40
33	Square-root non-Bloch topological insulators in non-Hermitian ring resonators. Optics Express, 2021, 29, 8462.	3.4	39
34	Observation of Transient Parity-Time Symmetry in Electronic Systems. Physical Review Letters, 2022, 128, 065701.	7.8	39
35	Experimental Demonstration of Acoustic Valley Hall Topological Insulators with the Robust Selection of <i>C</i> _{3<i>v</i>} -Symmetric Scatterers. Physical Review Applied, 2019, 12, .	3.8	34
36	Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems. Journal of Applied Physics, 2018, 123, .	2.5	30

#	Article	IF	Citations
37	Acoustic delay-line filters based on largely distorted topological insulators. Applied Physics Letters, 2018, 113, .	3.3	30
38	Unidirectional Extraordinary Sound Transmission with Mode-Selective Resonant Materials. Physical Review Applied, 2020, 13 , .	3.8	30
39	Super-resolution acoustic image montage via a biaxial metamaterial lens. Science Bulletin, 2020, 65, 1022-1029.	9.0	27
40	An Acoustic Meta‧kin Insulator. Advanced Materials, 2020, 32, e2002251.	21.0	26
41	Chirality-assisted three-dimensional acoustic Floquet lattices. Physical Review Research, 2019, 1, .	3.6	26
42	Study of acoustic wave behavior in silicon-based one-dimensional phononic-crystal plates using harmony response analysis. Journal of Applied Physics, 2009, 106, 104901.	2.5	25
43	Reciprocity of thermal diffusion in time-modulated systems. Nature Communications, 2022, 13, 167.	12.8	24
44	Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances. Scientific Reports, 2015, 5, 9376.	3.3	23
45	Active Acoustic Metasurface: Complete Elimination of Grating Lobes for High-Quality Ultrasound Focusing and Controllable Steering. Physical Review Applied, 2019, 11, .	3.8	23
46	Broadband and wide-angle negative reflection at a phononic crystal boundary. Applied Physics Letters, 2014, 104, .	3.3	22
47	Scattering reduction for an acoustic sensor using a multilayered shell comprising a pair of homogeneous isotropic single-negative media. Applied Physics Letters, 2012, 101, .	3.3	21
48	Acoustic Adiabatic Propagation Based on Topological Pumping in a Coupled Multicavity Chain Lattice. Physical Review Applied, 2020, 14, .	3.8	21
49	Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4, .	5.3	21
50	Heat transfer control using a thermal analogue of coherent perfect absorption. Nature Communications, 2022, 13, 2683.	12.8	21
51	Controllable acoustic rectification in one-dimensional piezoelectric composite plates. Journal of Applied Physics, 2013, 114, .	2.5	19
52	Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design of Functional Metastructures. Research, 2020, 2020, 8757403.	5.7	19
53	Phase-Locking Diffusive Skin Effect. Chinese Physics Letters, 2022, 39, 057801.	3.3	19
54	Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34, .	21.0	18

#	Article	IF	CITATIONS
55	Bound states in one-dimensional acoustic parity-time-symmetric lattices for perfect sensing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2698-2702.	2.1	17
56	Valleylike Edge States in Chiral Phononic Crystals with Dirac Degeneracies beyond High-Symmetry Points and Boundaries of Brillouin Zones. Physical Review Applied, 2020, 14, .	3.8	17
57	Hole-dominated Fowler–Nordheim tunneling in 2D heterojunctions for infrared imaging. Science Bulletin, 2021, 66, 139-146.	9.0	17
58	Acoustic one-way frequency up-converter with high transmission efficiency. Journal of Applied Physics, 2013, 114, 134508.	2.5	16
59	Topological nodal line states in three-dimensional ball-and-stick sonic crystals. Physical Review B, 2019, 100, .	3.2	16
60	Mirror-symmetry induced topological valley transport along programmable boundaries in a hexagonal sonic crystal. Journal of Physics Condensed Matter, 2019, 31, 245403.	1.8	15
61	High-Efficiency Vertical Light Emission through a Compact Silicon Nanoantenna Array. ACS Photonics, 2016, 3, 324-328.	6.6	14
62	Experimental realization of ultrasonic retroreflection tweezing via metagratings. Ultrasonics, 2021, 117, 106548.	3.9	14
63	Selective Topological Pumping for Robust, Efficient, and Asymmetric Sound Energy Transfer in a Dynamically Coupled Cavity Chain. Physical Review Applied, 2021, 15, .	3.8	13
64	Switching between deterministic and accidental Dirac degeneracy by rotating scatterers and the multi-channel topological transport of sound. New Journal of Physics, 2019, 21, 073047.	2.9	11
65	Acoustic topological adiabatic passage via a level crossing. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	11
66	Square-root-like higher-order topological states in three-dimensional sonic crystals. Journal of Physics Condensed Matter, 2022, 34, 104001.	1.8	11
67	Observation of low-loss broadband supermode propagation in coupled acoustic waveguide complex. Scientific Reports, 2017, 7, 45603.	3.3	9
68	Topologically protected edge transport of sound in coupled cavities of a modified honeycomb lattice. Journal of Physics Condensed Matter, 2018, 30, 345401.	1.8	9
69	Generating Multistructured Ultrasound via Bioinspired Metaskin Patterning for Lowâ€∓hreshold and Contactless Control of Living Organisms. Advanced Functional Materials, 2022, 32, .	14.9	9
70	Subwavelength acoustic energy harvesting via topological interface states in 1D Helmholtz resonator arrays. AIP Advances, $2021, 11, \ldots$	1.3	7
71	Realization of controllable acoustic acceleration beams via flexible active surfaces. Journal Physics D: Applied Physics, 2020, 53, 155502.	2.8	6
72	Nonpropagating X-shaped acoustic waves in sonic crystals without defects. Applied Physics Letters, 2010, 97, 223504.	3.3	4

#	Article	IF	CITATIONS
73	Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides. Physical Review Applied, 2019, $11, \ldots$	3.8	4
74	Anti-parity-time symmetric phase transition in diffusive systems*. Chinese Physics B, 2021, 30, 030505.	1.4	4
75	Efficient realization of on-demand functional ultrasonic fields based on prolate spheroidal wave functions from sampling theorem. Journal of the Acoustical Society of America, 2022, 151, 96-104.	1.1	4
76	Observing localization and delocalization of the flat-band states in an acoustic cubic lattice. Physical Review B, 2022, 105, .	3.2	4
77	Far-field super-resolution focusing with weak side lobes and defect detection via an ultrasonic meta-lens of sharp-edge apertures. Applied Physics Letters, 2022, 120, .	3.3	4
78	Elastic topological interface states induced by incident angle. International Journal of Mechanical Sciences, 2022, 225, 107359.	6.7	4
79	Experimental evidence of selective generation and one-way conversion of parities in valley sonic crystals. Journal of Applied Physics, 2021, 129, 074504.	2.5	3
80	Topological acoustic transports in chiral sonic crystals. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 227802.	0.5	3
81	Acoustic Metasurfaces: Hollow-Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft fiber/Rigid Bead Networks (Adv. Funct. Mater. 36/2018). Advanced Functional Materials, 2018, 28, 1870251.	14.9	2
82	Strongly localized states at the band-inverting interface with periodic lattice dislocations. AIP Advances, 2016, 6, 115312.	1.3	1
83	Lasing With Resonant Feedback in Weakly Modulated Parity-Time Symmetric Lattices. IEEE Photonics Journal, 2018, 10, 1-6.	2.0	1
84	3D Printed Ultra-thin Acoustic Metamaterials with Adaptable Low-frequency Absorption Performance. , 2022, 1, 100036.		1
85	Valley-protected backscattering suppression of elastic wave in two-dimensional solid phononic crystals., 2017,,.		0
86	Realizing the second harmonic acoustic focusing based on an artificial bubble array. AIP Advances, 2022, 12, 065120.	1.3	0
87	Underwater Transmitted Wavefront Manipulation Based on Bubble-Arrayed Acoustic Metasurfaces. Frontiers in Physics, 0, 10, .	2.1	0