
Cezary Specht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/302123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles. Sensors, 2022, 22, 1844.	2.1	11
2	Study on the Positioning Accuracy of the GNSS/INS System Supported by the RTK Receiver for Railway Measurements. Energies, 2022, 15, 4094.	1.6	2
3	Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle. Measurement: Journal of the International Measurement Confederation, 2021, 175, 109016.	2.5	8
4	Radio navigation systems: definitions and classifications. Journal of Navigation, 2021, 74, 945-954.	1.0	7
5	Determining the Seasonal Variability of the Territorial Sea Baseline in Poland (2018–2020) Using Integrated USV/GNSS/SBES Measurements. Energies, 2021, 14, 2693.	1.6	4
6	Integration of Multi-Source Geospatial Data from GNSS Receivers, Terrestrial Laser Scanners, and Unmanned Aerial Vehicles. Canadian Journal of Remote Sensing, 2021, 47, 621-634.	1.1	24
7	Three-Dimensional Thematic Map Imaging of the Yacht Port on the Example of the Polish National Sailing Centre Marina in Gdańsk. Applied Sciences (Switzerland), 2021, 11, 7016.	1.3	2
8	Concept of an Innovative Autonomous Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies, 2021, 14, 5370.	1.6	37
9	Comparative analysis of positioning accuracy of Garmin Forerunner wearable GNSS receivers in dynamic testing. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109846.	2.5	13
10	Impact of Hydrotechnical Structures on Forming the Tombolo Oceanographic Phenomenon in KoÅ,obrzeg and Sopot. TransNav, 2021, 15, 687-694.	0.3	2
11	Study on the Positioning Accuracy of GNSS/INS Systems Supported by DGPS and RTK Receivers for Hydrographic Surveys. Energies, 2021, 14, 7413.	1.6	22
12	Testing of Software for the Planning of a Linear Object GNSS Measurement Campaign under Simulated Conditions. Energies, 2021, 14, 7896.	1.6	3
13	Analysis of CNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography. Sensors, 2021, 21, 7831.	2.1	12
14	Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors, 2020, 20, 5018.	2.1	13
15	Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery. Journal of Marine Science and Engineering, 2020, 8, 464.	1.2	23
16	Testing the Accuracy of the Modified ICP Algorithm with Multimodal Weighting Factors. Energies, 2020, 13, 5939.	1.6	9
17	Testing the Positioning Accuracy of GNSS Solutions during the Tramway Track Mobile Satellite Measurements in Diverse Urban Signal Reception Conditions. Energies, 2020, 13, 3646.	1.6	12
18	Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors, 2020, 20, 4000.	2.1	30

CEZARY SPECHT

#	Article	IF	CITATIONS
19	Application of Least Squares with Conditional Equations Method for Railway Track Inventory Using GNSS Observations. Sensors, 2020, 20, 4948.	2.1	7
20	The Use of USV to Develop Navigational and Bathymetric Charts of Yacht Ports on the Example of National Sailing Centre in Gdańsk. Remote Sensing, 2020, 12, 2585.	1.8	21
21	Road Tests of the Positioning Accuracy of INS/GNSS Systems Based on MEMS Technology for Navigating Railway Vehicles. Energies, 2020, 13, 4463.	1.6	21
22	Evaluation of the Possibility of Identifying a Complex Polygonal Tram Track Layout Using Multiple Satellite Measurements. Sensors, 2020, 20, 4408.	2.1	4
23	Assessment of the Steering Precision of a Hydrographic USV along Sounding Profiles Using a High-Precision GNSS RTK Receiver Supported Autopilot. Energies, 2020, 13, 5637.	1.6	9
24	Verification of GNSS Measurements of the Railway Track Using Standard Techniques for Determining Coordinates. Remote Sensing, 2020, 12, 2874.	1.8	9
25	Seabed Topography Changes in the Sopot Pier Zone in 2010–2018 Influenced by Tombolo Phenomenon. Sensors, 2020, 20, 6061.	2.1	10
26	Methodology for Carrying out Measurements of the Tombolo Geomorphic Landform Using Unmanned Aerial and Surface Vehicles near Sopot Pier, Poland. Journal of Marine Science and Engineering, 2020, 8, 384.	1.2	32
27	Integrated Geodetic and Hydrographic Measurements of the Yacht Port for Nautical Charts and Dynamic Spatial Presentation. Geosciences (Switzerland), 2020, 10, 203.	1.0	10
28	3D modelling of beach topography changes caused by the tombolo phenomenon using terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry on the example of the city of Sopot. Geo-Marine Letters, 2020, 40, 675-685.	0.5	4
29	Geospatial Modeling of the Tombolo Phenomenon in Sopot using Integrated Geodetic and Hydrographic Measurement Methods. Remote Sensing, 2020, 12, 737.	1.8	33
30	Accuracy Analysis of Measuring X-Y-Z Coordinates with Regard to the Investigation of the Tombolo Effect. Sensors, 2020, 20, 1167.	2.1	6
31	Testing GNSS receiver accuracy in Samsung Galaxy series mobile phones at a sports stadium. Measurement Science and Technology, 2020, 31, 064006.	1.4	26
32	The Accuracy of a Marine Satellite Compass under Terrestrial Urban Conditions. Journal of Marine Science and Engineering, 2020, 8, 18.	1.2	13
33	Correction of determined coordinates of railway tracks in mobile satellite measurements. Diagnostyka, 2020, 21, 77-85.	0.5	1
34	Comparative analysis of positioning accuracy of GNSS receivers of Samsung Galaxy smartphones in marine dynamic measurements. Advances in Space Research, 2019, 63, 3018-3028.	1.2	43
35	Methodology for Performing Territorial Sea Baseline Measurements in Selected Waterbodies of Poland. Applied Sciences (Switzerland), 2019, 9, 3053.	1.3	21
36	Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors, 2019, 19, 3939.	2.1	45

CEZARY SPECHT

#	Article	IF	CITATIONS
37	Analysis of the possibilities in railways shape assessing using GNSS mobile measurements. MATEC Web of Conferences, 2019, 262, 11004.	0.1	7
38	Assessment of the Positioning Accuracy of DGPS and EGNOS Systems in the Bay of Gdansk using Maritime Dynamic Measurements. Journal of Navigation, 2019, 72, 575-587.	1.0	44
39	Comparative analysis of positioning accuracy of Samsung Galaxy smartphones in stationary measurements. PLoS ONE, 2019, 14, e0215562.	1.1	49
40	Determining the Variability of the Territorial Sea Baseline on the Example of Waterbody Adjacent to the Municipal Beach in Gdynia. Applied Sciences (Switzerland), 2019, 9, 3867.	1.3	9
41	A Method for Determination and Compensation of a Cant Influence in a Track Centerline Identification Using GNSS Methods and Inertial Measurement. Applied Sciences (Switzerland), 2019, 9, 4347.	1.3	9
42	Polish DGPS System: 1995–2017 – Study of Positioning Accuracy. Polish Maritime Research, 2019, 26, 15-21.	0.6	9
43	Spatial expansion of the symmetrical objects point clouds to the lateral surface of the cylinder – Mathematical model. Measurement: Journal of the International Measurement Confederation, 2019, 134, 40-47.	2.5	8
44	Use of a Least Squares with Conditional Equations Method in Positioning a Tramway Track in the Gdansk Agglomeration. TransNav, 2019, 13, 895-900.	0.3	5
45	A New Method for Determining the Territorial Sea Baseline Using an Unmanned, Hydrographic Surface Vessel. Journal of Coastal Research, 2019, 35, 925.	0.1	17
46	Selected aspects of testing the positioning accuracy of GNSS receivers used in sports and recreation by dynamic measurements. Baltic Journal of Health and Physical Activity, 2019, 11, 75-84.	0.2	3
47	Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle. Transportation Overview, 2019, 2019, 32-47.	0.0	3
48	Polish DCPS System: 1995-2018 – Studies of Reference Station Operating Zones. TransNav, 2019, 13, 581-586.	0.3	1
49	NAVIGATION USERS OF MULTI-GNSS CODE RECEIVERS. , 2019, , .		1
50	Availability of the GNSS Geodetic Networks Position during the Hydrographic Surveys in the Ports. TransNav, 2018, 12, 657-661.	0.3	8
51	THE CONCEPT OF INTEGRATED SYSTEM FOR COLLECTING GEOGRAPHIC AND HYDROGRAPHIC DATA FOR NAVIGATION PURPOSES IN RIS. , 2018, , .		0
52	Application of an Autonomous/Unmanned Survey Vessel (ASV/USV) in Bathymetric Measurements. Polish Maritime Research, 2017, 24, 36-44.	0.6	54
53	Determination of the Territorial Sea Baseline – Measurement Aspect. IOP Conference Series: Earth and Environmental Science, 2017, 95, 032011.	0.2	14
54	The Analysis of Tram Tracks Geometric Layout Based on Mobile Satellite Measurements. Urban Rail Transit, 2017, 3, 214-226.	0.9	8

CEZARY SPECHT

#	Article	IF	CITATIONS
55	COMPARATIVE ANALYSIS OF ACTIVE GEODETIC NETWORKS IN POLAND. , 2017, , .		23
56	Planning GPS Measurements of a Linear Object for a Specified Time Interval. Annual of Navigation, 2017, 24, 75-88.	0.3	1
57	A History of Maritime Radio-Navigation Positioning Systems used in Poland. Journal of Navigation, 2016, 69, 468-480.	1.0	25
58	Computer-aided evaluation of the railway track geometry on the basis of satellite measurements. Open Engineering, 2016, 6, .	0.7	13
59	Mobile Satellite Measurements in Designing and Exploitation of Rail Roads. Transportation Research Procedia, 2016, 14, 625-634.	0.8	14
60	A Method for The Assessing of Reliability Characteristics Relevant to an Assumed Position-Fixing Accuracy in Navigational Positioning Systems. Polish Maritime Research, 2016, 23, 20-27.	0.6	21
61	Modeling 3D Objects for Navigation Purposes Using Laser Scanning. TransNav, 2016, 10, 301-306.	0.3	12
62	Determination of the Territorial Sea Baseline – Aspect of Using Unmanned Hydrographic Vessels. TransNav, 2016, 10, 649-654.	0.3	14
63	Position accuracy and fix rate of athletes in location monitoring. Baltic Journal of Health and Physical Activity, 2016, 8, 7-18.	0.2	3
64	Mobile satellite measurements on the Pomeranian Metropolitan Railway. Transportation Overview, 2016, 2016, 24-35.	0.0	3
65	Accuracy Of The GPS Positioning System In The Context Of Increasing The Number Of Satellites In The Constellation. Polish Maritime Research, 2015, 22, 9-14.	0.6	35
66	Evaluation of Positioning Functionality in ASG EUPOS for Hydrography and Off-Shore Navigation. TransNav, 2015, 9, 221-227.	0.3	5
67	Finding Deformation of the Stright Rail Track by GNSS Measurements. Annual of Navigation, 2012, 19, 91-104.	0.3	9
68	Accuracy and coverage of the modernized Polish Maritime differential GPS system. Advances in Space Research, 2011, 47, 221-228.	1.2	17
69	Selected Problems of Determining the Course of Railway Routes by Use of GPS Network Solution. Archives of Transport, 2011, 23, .	0.4	15
70	Position accuracy evaluation of the modernized Polish DGPS. Polish Maritime Research, 2009, 16, 57-61.	0.6	20
71	Perfecting the Maritime Navigation information services of the European Union. , 2008, , .		5

1