
Yuichi Masubuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brownian simulations of a network of reptating primitive chains. Journal of Chemical Physics, 2001, 115, 4387-4394.	3.0	268
2	Overview of automotive structural composites technology developments in Japan. Composites Science and Technology, 2018, 155, 221-246.	7.8	210
3	Primitive Chain Network Simulation of Elongational Flows of Entangled Linear Chains: Stretch/Orientation-induced Reduction of Monomeric Friction. Macromolecules, 2012, 45, 2773-2782.	4.8	150
4	Entanglement molecular weight and frequency response of sliplink networks. Journal of Chemical Physics, 2003, 119, 6925-6930.	3.0	125
5	Multi-chain slip-spring model for entangled polymer dynamics. Journal of Chemical Physics, 2012, 137, 154902.	3.0	104
6	Effect of chain structure on the melt rheology of modified polypropylene. Journal of Applied Polymer Science, 1999, 73, 1493-1500.	2.6	99
7	Simulating the Flow of Entangled Polymers. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 11-33.	6.8	92
8	Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow. Macromolecules, 2001, 34, 6056-6063.	4.8	82
9	Effective Value of the Dynamic Dilution Exponent in Bidisperse Linear Polymers: From 1 to 4/3. Macromolecules, 2012, 45, 2085-2098.	4.8	76
10	Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs. Journal of Chemical Physics, 2013, 138, 104907.	3.0	76
11	Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheologica Acta, 2001, 40, 329-338.	2.4	70
12	Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model. Modelling and Simulation in Materials Science and Engineering, 2004, 12, S91-S100.	2.0	59
13	Periodic Motion of Large DNA Molecules during Steady Field Gel Electrophoresis. Macromolecules, 1994, 27, 6061-6067.	4.8	58
14	Quantitative comparison of primitive chain network simulations with literature data of linear viscoelasticity for polymer melts. Journal of Non-Newtonian Fluid Mechanics, 2008, 149, 87-92.	2.4	58
15	Primitive Chain Network Simulation of Elongational Flows of Entangled Linear Chains: Role of Finite Chain Extensibility. Macromolecules, 2011, 44, 9675-9682.	4.8	58
16	Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 2011, 52, 2618-2627.	3.8	55
17	Nonlinear Elongational Rheology of Unentangled Polystyrene and Poly(<i>p</i> - <i>tert-</i> butylstyrene) Melts. Macromolecules, 2018, 51, 9710-9729.	4.8	54
18	`Positive' and `negative' electro-rheological effect of liquid blends1Dedicated to the memory of Professor Gianni Astarita1. Journal of Non-Newtonian Fluid Mechanics, 1998, 76, 199-211.	2.4	50

#	Article	IF	CITATIONS
19	Crystallization kinetics of polypropylene under high pressure and steady shear flow. Polymer, 2003, 44, 5843-5849.	3.8	48
20	Comparison among Slip-Link Simulations of Bidisperse Linear Polymer Melts. Macromolecules, 2008, 41, 8275-8280.	4.8	48
21	Spontaneous self-assembly process for threadlike micelles. Journal of Chemical Physics, 2007, 126, 244905.	3.0	47
22	Melts of Linear Polymers in Fast Flows. Macromolecules, 2020, 53, 5023-5033.	4.8	47
23	Origin of Stress Overshoot under Start-up Shear in Primitive Chain Network Simulation. ACS Macro Letters, 2014, 3, 1183-1186.	4.8	46
24	Rheological Properties of Native Silk Fibroins from Domestic and Wild Silkworms, and Flow Analysis in Each Spinneret by a Finite Element Method. Biomacromolecules, 2009, 10, 929-935.	5.4	43
25	A reaction kinetics model of water sonolysis in the presence of a spin-trap. Ultrasonics Sonochemistry, 1999, 5, 133-139.	8.2	41
26	Test of Orientation/Stretch-Induced Reduction of Friction via Primitive Chain Network Simulations for Polystyrene, Polyisoprene, and Poly(<i>n</i> butyl acrylate). Macromolecules, 2014, 47, 6768-6775.	4.8	41
27	Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model. Journal of Non-Newtonian Fluid Mechanics, 2000, 89, 287-301.	2.4	39
28	Component Dynamics in Polyisoprene/Poly(4- <i>tert</i> -butylstyrene) Miscible Blends. Macromolecules, 2008, 41, 8694-8711.	4.8	38
29	Primitive Chain Network Simulations for Pom-Pom Polymers in Uniaxial Elongational Flows. Macromolecules, 2014, 47, 3511-3519.	4.8	37
30	Primitive chain network simulations for branched polymers. Rheologica Acta, 2006, 46, 297-303.	2.4	33
31	Structure of entangled polymer network from primitive chain network simulations. Journal of Chemical Physics, 2010, 132, 134902.	3.0	33
32	Comparison among multi-chain models for entangled polymer dynamics. Soft Matter, 2018, 14, 5986-5994.	2.7	33
33	Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model. Journal of Chemical Physics, 2008, 128, 154901.	3.0	32
34	Viscoelastic Relaxation of Rouse Chains undergoing Head-to-Head Association and Dissociation: Motional Coupling through Chemical Equilibrium. Macromolecules, 2015, 48, 3014-3030.	4.8	32
35	A Multichain Slip-Spring Dissipative Particle Dynamics Simulation Method for Entangled Polymer Solutions. Macromolecules, 2016, 49, 9186-9191.	4.8	32
36	Multichain Slip-Spring Simulations for Branch Polymers. Macromolecules, 2018, 51, 10184-10193.	4.8	32

#	Article	IF	CITATIONS
37	Development of shear flow thermal rheometer for direct measurement of crystallization fraction of polymer melts under shear deformation. Polymer, 2000, 41, 523-531.	3.8	31
38	Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2692-2704.	2.1	31
39	Detailed balance condition and effective free energy in the primitive chain network model. Journal of Chemical Physics, 2011, 135, 184904.	3.0	31
40	Flow analysis of aqueous solution of silk fibroin in the spinneret of Bombyx mori silkworm by combination of viscosity measurement and finite element method calculation. Polymer, 2008, 49, 952-956.	3.8	29
41	Thermal analysis of shear induced crystallization by the shear flow thermal rheometer: isothermal crystallization of polypropylene. Polymer, 2001, 42, 5023-5027.	3.8	28
42	A molecular dynamics simulation study on polymer networks of end-linked flexible or rigid chains. Journal of Chemical Physics, 2007, 127, 164905.	3.0	26
43	Primitive chain network simulations for asymmetric star polymers. Journal of Chemical Physics, 2011, 134, 194905.	3.0	26
44	Reptation and constraint release dynamics in bidisperse polymer melts. Journal of Chemical Physics, 2014, 141, 194904.	3.0	26
45	Molecular Dynamics Simulations for Resolving Scaling Laws of Polyethylene Melts. Polymers, 2017, 9, 24.	4.5	25
46	i-Rheo <i>GT</i> : Transforming from Time to Frequency Domain without Artifacts. Macromolecules, 2018, 51, 5055-5068.	4.8	25
47	Phase structure change and ER effect in liquid crystalline polymer/dimethylsiloxane blends. Rheologica Acta, 1998, 37, 54-60.	2.4	24
48	Chain contraction and nonlinear stress damping in primitive chain network simulations. Journal of Chemical Physics, 2010, 133, 174902.	3.0	23
49	Rheological characterization of ionic bonding in ethylene-ionomer melts with low neutralization degree. Journal of Rheology, 2002, 46, 1325-1339.	2.6	22
50	Dielectric and Viscoelastic Behavior of Star-Branched Polyisoprene: Two Coarse-Grained Length Scales in Dynamic Tube Dilation. Macromolecules, 2014, 47, 7637-7652.	4.8	22
51	Effects of degree of freedom below entanglement segment on relaxation of polymer configuration under fast shear in multi-chain slip-spring simulations. Journal of Chemical Physics, 2015, 143, 224905.	3.0	21
52	Distribution function of fiber length in thermoplastic composites. Composites Science and Technology, 2016, 134, 43-48.	7.8	21
53	Photochemical control of network structure in gels and photo-induced changes in their viscoelastic properties. Colloids and Surfaces B: Biointerfaces, 2007, 56, 285-289.	5.0	20
54	Precise Analyses of Short-Time Relaxation at Asymmetric Polystyrene Interface in Terms of Molecular Weight by Time-Resolved Neutron Reflectivity Measurements. Macromolecules, 2011, 44, 9424-9433.	4.8	20

#	Article	IF	CITATIONS
55	Stretch/orientation Induced Acceleration in Stress Relaxation in Coarse-grained Molecular Dynamics Simulations. Nihon Reoroji Gakkaishi, 2013, 41, 35-37.	1.0	20
56	Periodic behavior of DNA molecules during steady field gel electrophoresis. Macromolecules, 1993, 26, 5269-5270.	4.8	19
57	Change of the higher order structure of DNA induced by the complexation with intercalating synthetic polymer, as is visualized by fluorescence microscopy. Nucleic Acids Research, 1993, 21, 37-40.	14.5	19
58	Highly entangled polymer primitive chain network simulations based on dynamic tube dilation. Journal of Chemical Physics, 2004, 121, 12650.	3.0	19
59	Entangled polymer orientation and stretch under large step shear deformations in primitive chain network simulations. Rheologica Acta, 2008, 47, 591-599.	2.4	19
60	Primitive chain network simulations for elongational viscosity of bidisperse polystyrene melts. Advanced Modeling and Simulation in Engineering Sciences, 2015, 2, .	1.7	19
61	Dynamics of a DNA Molecule Hanging over an Obstacle in Gel Electrophoresis. Journal of the Physical Society of Japan, 1995, 64, 1412-1420.	1.6	19
62	Conformational dynamics of DNA during biased sinusoidal field gel electrophoresis. Electrophoresis, 1996, 17, 1065-1074.	2.4	18
63	The effect of ultrahigh molecular weight polymers on the nonlinear response in uniaxial elongational viscosity. Nihon Reoroji Gakkaishi, 1997, 25, 215-216.	1.0	18
64	Primitive chain network model for block copolymers. Journal of Non-Crystalline Solids, 2006, 352, 5001-5007.	3.1	18
65	A theoretical analysis of rheodielectric response of typeâ€A polymer chains. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1039-1057.	2.1	18
66	Retardation of the reaction kinetics of polymers due to entanglement in the post-gel stage in multi-chain slip-spring simulations. Soft Matter, 2019, 15, 5109-5115.	2.7	18
67	Primitive chain network simulations for entangled DNA solutions. Journal of Chemical Physics, 2009, 131, 114906.	3.0	17
68	Rheo-Dielectric Responses of Entangled <i>cis</i> -Polyisoprene under Uniform Steady Shear and LAOS. Macromolecules, 2014, 47, 246-255.	4.8	17
69	Stress Undershoot of Entangled Polymers under Fast Startup Shear Flows in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2018, 46, 23-28.	1.0	17
70	Stress Rectification in MR Fluids under Tilted Magnetic Field. International Journal of Modern Physics B, 1999, 13, 2028-2035.	2.0	16
71	Melt rheology of ethylene ionomers blended with a small-molecule acid. Polymer, 2001, 42, 7907-7910.	3.8	16
72	Primitive Chain Network Simulations on Dielectric Relaxation of Linear Polymers under Shear Flow. Nihon Reoroji Gakkaishi, 2004, 32, 197-202.	1.0	16

#	Article	IF	CITATIONS
73	Primitive Chain Network Simulations of Damping Functions for Shear, Uniaxial, Biaxial and Planar Deformations. Nihon Reoroji Gakkaishi, 2007, 35, 73-77.	1.0	16
74	Plateau Moduli of Several Single-Chain Slip-Link and Slip-Spring Models. Macromolecules, 2021, 54, 1338-1353.	4.8	16
75	Onset of static and dynamic universality among molecular models of polymers. Scientific Reports, 2017, 7, 12379.	3.3	15
76	DNA-Chitosan Hydrogels: Formation, Properties, and Functionalization with Catalytic Nanoparticles. ACS Applied Bio Materials, 2021, 4, 1823-1832.	4.6	15
77	Micro-computerized tomographic observation of the spinning apparatus in Bombyx mori silkworms. Polymer, 2008, 49, 5665-5669.	3.8	14
78	Primitive chain network simulations for comb-branched polymer under step shear deformations. Rheologica Acta, 2012, 51, 193-200.	2.4	14
79	Direct observation of polymer crystallization process under shear by a shear flow observation system. Polymer Testing, 2003, 22, 101-108.	4.8	13
80	Formation of globules and aggregates of DNA chains in DNA/polyethylene glycol/monovalent salt aqueous solutions. Journal of Chemical Physics, 2009, 131, 094901.	3.0	13
81	Dynamics of Polyisoprene-Poly(<i>p</i> - <i>tert</i> -butylstyrene) Diblock Copolymer in Disordered State. Macromolecules, 2011, 44, 1585-1602.	4.8	13
82	Complex Network Representation of the Structure-Mechanical Property Relationships in Elastomers with Heterogeneous Connectivity. Patterns, 2020, 1, 100135.	5.9	13
83	Entanglement Molecular Weight. Nihon Reoroji Gakkaishi, 2020, 48, 177-183.	1.0	13
84	Strain-hardening Property and Internal Deformation of Polymer Composite Melts under Uniaxial Elongation Journal of Fiber Science and Technology, 1998, 54, 538-543.	0.0	12
85	Electrically induced phase inversion in urethane-modified polypropylene glycol/dimethylsiloxane blend. Journal of Chemical Physics, 1997, 107, 5945-5947.	3.0	11
86	Numerical study of chain conformation on shear banding using diffusive Rolie-Poly model. Rheologica Acta, 2011, 50, 753-766.	2.4	11
87	Cross-Correlation Contributions to Orientational Relaxations in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2013, 41, 1-6.	1.0	11
88	Concept of Stretch/Orientation-Induced Friction Reduction Tested with a Simple Molecular Constitutive Equation. Nihon Reoroji Gakkaishi, 2014, 42, 207-213.	1.0	11
89	Orientational Cross-Correlation in Entangled Binary Blends in Primitive Chain Network Simulations. Macromolecules, 2016, 49, 9258-9265.	4.8	11
90	Primitive chain network simulations of probe rheology. Soft Matter, 2017, 13, 6585-6593.	2.7	11

#	Article	IF	CITATIONS
91	Orientational cross correlations between entangled branch polymers in primitive chain network simulations. Journal of Chemical Physics, 2017, 147, 184903.	3.0	10
92	Coil-globule transitions drive discontinuous volume conserving deformation in locally restrained gels. Nature Communications, 2018, 9, 2062.	12.8	10
93	Elasticity of Randomly Cross-Linked Networks in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2021, 49, 73-78.	1.0	10
94	Stress-Optical Relationship in Bead-Spring Simulations for Entangled Polymers under Start-up Shear Flows. Nihon Reoroji Gakkaishi, 2016, 44, 65-68.	1.0	9
95	Reliability Engineering. Measurement of Biaxial Elongational Viscosity of Polymer Melts Using Lubricated Squeezing Flow Method Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 1296-1300.	0.2	9
96	Effect of Ultrasound Frequency on Sonochemical Luminescence under Well-Determined Sound Pressure. Japanese Journal of Applied Physics, 1999, 38, 3103-3104.	1.5	8
97	The Effect of CO ₂ Pressure on Viscoelasticity of LDPE. International Polymer Processing, 2008, 23, 173-177.	0.5	8
98	Effect of Osmotic Force on Orientational Cross-correlation in Primitive Chain Network Simulation. Nihon Reoroji Gakkaishi, 2016, 44, 219-222.	1.0	8
99	Large Network Swelling and Solvent Redistribution Are Necessary for Polymer Gels to Show Negative Normal Stress. ACS Macro Letters, 2017, 6, 512-514.	4.8	8
100	Critical test of bead–spring model to resolve the scaling laws of polymer melts: a molecular dynamics study. Molecular Simulation, 2017, 43, 1196-1201.	2.0	8
101	Primitive chain network simulations for H-polymers under fast shear. Soft Matter, 2020, 16, 1056-1065.	2.7	8
102	Primitive Chain Network Simulations of Entangled Melts of Symmetric and Asymmetric Star Polymers in Uniaxial Elongational Flows. Nihon Reoroji Gakkaishi, 2021, 49, 171-178.	1.0	8
103	Molecular Simulations for Entangled Polymer Dynamics. Nihon Reoroji Gakkaishi, 2006, 34, 275-282.	1.0	8
104	Brownian Dynamics Simulation of Biased Sinusoidal Field Gel Electrophoresis. Macromolecules, 1997, 30, 912-918.	4.8	7
105	The effect of pre-thermal history on shear and uniaxial elongational viscosity of a tetrafluoroethylene/hexafluoropropylene copolymer near the crystal melting transition. Rheologica Acta, 2003, 42, 338-344.	2.4	7
106	A multiscale simulation of polymer processing using parameterâ€based bridging in melt rheology. Journal of Applied Polymer Science, 2012, 125, 2740-2747.	2.6	7
107	PASTA and NAPLES: Rheology Simulator. , 2016, , 101-127.		7
108	Extensional Step Strain Rate Experiments on an Entangled Polymer Solution. Macromolecules, 2017, 50, 386-395.	4.8	7

#	Article	IF	CITATIONS
109	Contraction of Entangled Polymers After Large Step Shear Deformations in Slip-Link Simulations. Polymers, 2019, 11, 370.	4.5	7
110	Multi-chain slip-spring simulations for polyisoprene melts. Korea Australia Rheology Journal, 2019, 31, 241-248.	1.7	7
111	Simulation Study on Effect of Polymer Entanglement on the Strain Hardening. Molecular Simulation, 1999, 21, 257-269.	2.0	6
112	Wall boundary model for primitive chain network simulations. Journal of Chemical Physics, 2009, 130, 214907.	3.0	6
113	Test of the Stretch/Orientation-Induced Reduction of Friction for Biaxial Elongational Flow via Primitive Chain Network Simulation. Nihon Reoroji Gakkaishi, 2015, 43, 63-39.	1.0	6
114	Relaxation of Rouse Modes for Unentangled Polymers Obtained by Molecular Simulations. Nihon Reoroji Gakkaishi, 2018, 46, 171-178.	1.0	6
115	Effect of Inertia on Linear Viscoelasticity of Harmonic Dumbbell Model. Nihon Reoroji Gakkaishi, 2019, 47, 143-154.	1.0	6
116	DOMAIN STRUCTURE AND MR EFFECT OF FERROFLUID EMULSION. International Journal of Modern Physics B, 2001, 15, 859-863.	2.0	5
117	Rheological properties of polystyrene blends with rigid ladderlike polyphenylsilsesquioxane. Journal of Applied Polymer Science, 2005, 96, 706-713.	2.6	5
118	Comparison among Multi-Chain Simulations for Entangled Polymers under Fast Shear. ECS Transactions, 2018, 88, 161-167.	0.5	5
119	Wall slip in primitive chain network simulations of shear startup of entangled polymers and its effect on the shear stress undershoot. Journal of Rheology, 2021, 65, 213-223.	2.6	5
120	Soft-core Interaction Between Entanglement Segments for Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2012, 40, 21-30.	1.0	5
121	Brownian simulations for tetra-gel-type phantom networks composed of prepolymers with bidisperse arm length. Soft Matter, 2022, 18, 4715-4724.	2.7	5
122	Motion of large DNA molecules traveling from solution to gel under steady field. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1105-1111.	2.1	4
123	Electrically Induced Phase Inversion in Polyurethane/Dimethylsiloxane Blend. International Journal of Modern Physics B, 1999, 13, 2011-2017.	2.0	4
124	Preparation and Property of Model Homogeneous ER Fluids Having Urethane Groups. International Journal of Modern Physics B, 1999, 13, 1998-2004.	2.0	4
125	Dependence of sonochemical luminescence on various sound fields. Ultrasonics, 2000, 38, 671-675.	3.9	4
126	A Novel Elongational Rheology Control of PS by SBS and Dicumyl Peroxide. Nihon Reoroji Gakkaishi, 2005, 33, 141-144.	1.0	4

#	Article	IF	CITATIONS
127	Relaxation Dynamics of the Normal Stress of Polymer Gels. Macromolecules, 2017, 50, 5208-5213.	4.8	4
128	Effects of Constraint-Release on Entangled Polymer Dynamics in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2020, 48, 37-42.	1.0	4
129	Primitive chain network simulations for the interrupted shear response of entangled polymeric liquids. Soft Matter, 2020, 16, 6654-6661.	2.7	4
130	Rheological properties of linear and short-chain branched polyethylene with nearly monodispersed molecular weight distribution. Rheologica Acta, 2021, 60, 511-519.	2.4	4
131	Uniaxial Elongational Flow Behaviour of SBS Block Copolymer Melts Treated at High Temperature. The Correlation of Crosslinking and Strain-Hardening Nihon Reoroji Gakkaishi, 2001, 29, 61-62.	1.0	4
132	MEASUREMENT OF YOUNG'S MODULUS AND POISSON'S RATIO OF POLYMERS UNDER HIGH PRESSURE. Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 223-226.	0.2	4
133	Linear Rheological Properties of Poly(Propylene Carbonate) with Different Molecular Weights. Nihon Reoroji Gakkaishi, 2021, 49, 267-274.	1.0	4
134	Nonlinear Shear and Elongational Rheology of Poly(propylene carbonate). Nihon Reoroji Gakkaishi, 2022, 50, 127-135.	1.0	4
135	Simulation study on molecular relaxation in ionomer melts. Polymer, 2002, 43, 239-242.	3.8	3
136	Primitive Chain Network Simulations of Conformational Relaxation for Individual Molecules in the Entangled State. Nihon Reoroji Gakkaishi, 2008, 36, 181-185.	1.0	3
137	Primitive Chain Network Simulations of Conformational Relaxation for Individual Molecules in the Entangled State. II. Retraction from Stretched States Nihon Reoroji Gakkaishi, 2009, 37, 65-68.	1.0	3
138	DNA diffusion in aqueous solution in presence of suspended particles. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1103-1111.	2.1	3
139	Inter-Chain Cross-Correlation in Multi-Chain Slip-Link Simulations without Force Balance at Entanglements. Nihon Reoroji Gakkaishi, 2017, 45, 175-180.	1.0	3
140	Analysis of Elongational Viscosity of Entangled Poly (Propylene Carbonate) Melts by Primitive Chain Network Simulations. Polymers, 2022, 14, 741.	4.5	3
141	Effects of Slip-Spring Parameters and Rouse Bead Density on Polymer Dynamics in Multichain Slip-Spring Simulations. Journal of Physical Chemistry B, 2022, , .	2.6	3
142	Radial Distribution Functions of Entanglements in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2021, 49, 337-345.	1.0	3
143	STRESS RELAXATION OF POLYMER MELTS IN BIAXIAL AND PLANAR ELONGATIONS. Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 121-123.	0.2	2
144	The shear-flow properties of electro-rheological liquid polymeric blends. Journal of Non-Newtonian Fluid Mechanics, 1999, 85, 249-256.	2.4	2

#	Article	IF	CITATIONS
145	A systematic description by BKZ model of strain hardening or softening in uniaxial elongation of polymer melts. Journal of Macromolecular Science - Physics, 1999, 38, 289-304.	1.0	2
146	MOLECULAR ORIENTATION AND ELECTROHYDRODYNAMIC FLOW IN HOMOGENEOUS ER FLUIDS. International Journal of Modern Physics B, 2001, 15, 973-979.	2.0	2
147	ELECTRICALLY INDUCED VISCOSITY CHANGE IN IMMISCIBLE LIQUID BLEND. International Journal of Modern Physics B, 2001, 15, 1062-1069.	2.0	2
148	The Influence of Heat Treatment on Uniaxial Elongational Flow Behavior of PS/SBS Blends. Nihon Reoroji Gakkaishi, 2006, 34, 189-197.	1.0	2
149	Rheological properties of poly(methyl methacrylate)/rigid ladderlike polyphenylsilsesquioxane blends. Journal of Applied Polymer Science, 2007, 104, 352-359.	2.6	2
150	Rheological and Dielectric Behavior of Polyisoprene under Pressurized Carbon Dioxide. Nihon Reoroji Gakkaishi, 2010, 38, 117-123.	1.0	2
151	Nonlinear Stress Relaxation of Scarcely Entangled Chains in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2013, 41, 13-19.	1.0	2
152	Re-Examination of the Effect of the Stretch/Orientation-Induced Reduction of Friction under Equi-Biaxial Elongational Flow via Primitive Chain Network Simulationâ€,Usingâ€,Twoâ€,Definitionsâ€,ofâ€,Orientationâ€,Anisotropy. Nihon Reoroji Gakkaishi, 2018, 46, 14	1.0 5-149.	2
153	Characterization of critical gel state of polyamides by viscoelastic, thermal, and IR measurements. Rheologica Acta, 2019, 58, 281-290.	2.4	2
154	Short-time dynamics of a tracer in an ideal gas. Physical Review E, 2020, 102, 032104.	2.1	2
155	Simulations of Startup Planar Elongation of an Entangled Polymer Melt. Nihon Reoroji Gakkaishi, 2020, 48, 43-48.	1.0	2
156	Quantitative bridging between full-atomistic and bead-spring models for polybutadiene and poly(butadiene–styrene) copolymers. Journal of Chemical Physics, 2021, 154, 044901.	3.0	2
157	Title is missing!. Seikei-Kakou, 2001, 13, 563-570.	0.0	2
158	Effects of the Pressure and Finishing Agents on the Water Absorption of Cotton Fabric Journal of Fiber Science and Technology, 1998, 54, 152-158.	0.0	2
159	49 Volumes of Nihon Reoroji Gakkaishi (the Journal of the Society of Rheology, Japan). Nihon Reoroji Gakkaishi, 2022, 50, 147-150.	1.0	2
160	REVERSIBILITY OF THE ER EFFECT IN IMMISCIBLE LIQUID BLENDS. International Journal of Modern Physics B, 2002, 16, 2468-2473.	2.0	1
161	Shear induced formation of lubrication layers of negative normal stress gels. Soft Matter, 2017, 13, 6515-6520.	2.7	1
162	Relaxation Dynamics of Surface Fluctuations of Foam Films Decorated by Gel-Like Polymer-Surfactant Complexes. Journal of the Physical Society of Japan, 2018, 87, 104602.	1.6	1

#	Article	IF	CITATIONS
163	Fracture strain of composite with nonuniformly distributed reinforcing fibers. Journal of Rheology, 2020, 64, 933-939.	2.6	1

164 (19) ãfŸã, ãfã, 1ã, 3ãf"ãffã, ç3»ã® CAE: å^†åã, ãfŸãf¥ãf¬ãf¼ã, ãf§ãf3ã«ã, ã, vé«~å^†åã®ç‰©æ€§ä°æ,¬. Seikei-Kakou, 2006, 18, 489

165	Primitive Chain Network Simulations of Start-up Shear Flow. Seikei-Kakou, 2011, 23, 211-215.	0.0	1
166	Characterization of Transitional Behavior of the Facial Wash Foams via Dynamic Viscoelastic Measurements. Nihon Reoroji Gakkaishi, 2015, 43, 71-75.	1.0	1
167	Melt Strength and Extrudate Swell of High-Melt-Strength Polypropylene Nihon Reoroji Gakkaishi, 1999, 27, 67-68.	1.0	0
168	THE MECHANISM OF ER EFFECT INDUCED BY ATTACHING FLOCKED FABRICS ON ELECTRODES. International Journal of Modern Physics B, 2001, 15, 767-773.	2.0	0
169	Primitive Chain Network Model for Entangled Polymer Blends. AIP Conference Proceedings, 2004, , .	0.4	0
170	Generalization of the Ohta-Kawasaki Theory for Microphase Separation of Block Copolymer Melts. AIP Conference Proceedings, 2004, , .	0.4	0
171	Pre-Averaged Sampling On the Entanglement Kinetics for Polymer Dynamics. Macromolecular Symposia, 2006, 242, 140-145.	0.7	0
172	åĩä,€å^†åãŒæã出ã൸∢ã,‰ãѯåĩã,. Kobunshi, 2007, 56, 412-415.	0.0	0
173	Dynamic Viscoelastic Measurement of E. coli Giant DNA Solutions. Kobunshi Ronbunshu, 2007, 64, 458-463.	0.2	0
174	Observation of Individual DNAs in Concentrated DNA/PEG Blend Solutions. Kobunshi Ronbunshu, 2007, 64, 740-744.	0.2	0
175	Primitive Chain Network Simulations for Particle Dispersed Polymers. AIP Conference Proceedings, 2008, , .	0.4	0
176	Rheology of Entangled Polymeric Liquids through Simulations of the Primitive Chain Network Model with Finite Extensibility. AIP Conference Proceedings, 2008, , .	0.4	0
177	Molecular Simulations for Rheology of Polymeric Materials. Nippon Gomu Kyokaishi, 2013, 86, 113-118.	0.0	0
178	An Approximate Analytical Solution of Flow Fields at the Front of Poiseuille Flows. Nihon Reoroji Gakkaishi, 2016, 44, 211-217.	1.0	0
179	Dielectric Relaxation and Ionic Conductivity of a Chitosan/Poly(ethylene oxide) Blend Doped with Potassium and Calcium Cations. Nihon Reoroji Gakkaishi, 2016, 44, 89-97.	1.0	0
180	Conference Report for the 14 th International Workshop for East Asian Young Rheologists (IWEAYR-14) in Nagoya. Nihon Reoroji Gakkaishi, 2019, 47, 123-125.	1.0	0

#	Article	IF	CITATIONS
181	Rheology Simulations. Oleoscience, 2019, 19, 461-467.	0.0	0
182	The Mems Modeling System by Collaboration of Multi-Scale Simulators and Application to the Microreactor. , 2002, , 64-66.		0
183	ER RESPONSE OF SILICONE GEL CONTAINING DIELECTRIC PARTICLES. , 2002, , .		0
184	REVERSIBILITY OF THE ER EFFECT IN IMMISCIBLE LIQUID BLENDS. , 2002, , .		0
185	2807 Dissipative Particle Dynamics Simulation for Formation Process of Threadlike Micelles. The Proceedings of the Computational Mechanics Conference, 2005, 2005.18, 47-48.	0.0	0
186	A221 Dissipative Particle Dynamics Simulation for Formation Process of Threadlike Micelles in Shear Flow. The Proceedings of the Thermal Engineering Conference, 2006, 2006, 231-232.	0.0	0
187	ãfžãf«ãfẽ,¹ã,±ãf¼ãf«ã,•ãfŸãf¥ãf¬ãf¼ã,•ãf§ãf³ã«ã,^ã,<å^†åã®å½¢ã¤æ^形性ã®è§£æž• Seikei-Kakou, 2007	',	354.
188	A Review on Recent Topics in Polymer Rheology. Seikei-Kakou, 2011, 23, 414-417.	0.0	0
189	A Brownian dynamics study of strain hardening of branching polymer melts. , 1999, , .		0
190	Molecular Simulations for Polymer Processing. Seikei-Kakou, 2014, 26, 422-425.	0.0	0
191	"SPECIAL ISSUE COORDINATED BY KANSAI REOROJI KENKYUKAI DIVISION ― Nihon Reoroji Gakkaishi, 2015, 43, 51.	1.0	0
192	Large Scale Coarse-Grained Molecular Dynamics Simulations of Void Formations in Rubbers for Tires. ECS Meeting Abstracts, 2018, , .	0.0	0
193	Modeling Viscoelasticity By Mesoscopic Coarse-Grained Models with Transient Bonds. ECS Meeting Abstracts, 2018, , .	0.0	0
194	Detailed Comparison Among Multi-Chain Simulations for Entangled Polymers. ECS Meeting Abstracts, 2018, , .	0.0	0
195	Orientational Distribution of Reinforcing Fibers of Thermoplastic Composites Produced By Compression Molding – Heat & Cool vs Cold Pressing. ECS Meeting Abstracts, 2018, , .	0.0	0
196	Polymer Rheology. Seikei-Kakou, 2018, 30, 331-336.	0.0	0