Allison Kirkpatrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020736/publications.pdf

Version: 2024-02-01

516710 501196 29 940 16 28 g-index citations h-index papers 29 29 29 1537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GOODS- <i>HERSCHEL</i> : IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT. Astrophysical Journal, 2012, 759, 139.	4.5	148
2	THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF <i>>z < /i> = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY. Astrophysical Journal, 2015, 814, 9.</i>	4.5	128
3	The Accretion History of AGNs. I. Supermassive Black Hole Population Synthesis Model. Astrophysical Journal, 2019, 871, 240.	4.5	92
4	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
5	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2054-2084.	4.4	63
6	AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey. Astrophysical Journal, 2017, 850, 66.	4.5	50
7	GOODS- <i>HERSCHEL</i> : SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS. Astrophysical Journal, 2013, 763, 123.	4.5	46
8	Exploring AGN and star formation activity of massive galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3273-3296.	4.4	35
9	CO Emission in Infrared-selected Active Galactic Nuclei. Astrophysical Journal, 2019, 879, 41.	4.5	33
10	UNTANGLING THE NATURE OF SPATIAL VARIATIONS OF COLD DUST PROPERTIES IN STAR FORMING GALAXIES. Astrophysical Journal, 2014, 789, 130.	4.5	32
11	PROBING THE INTERSTELLAR MEDIUM OF <i>z</i> å^1/4 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND <i>SPITZER</i> MID-INFRARED SPECTROSCOPY. Astrophysical Journal, 2013, 772, 92.	4.5	31
12	The AGN–Star Formation Connection: Future Prospects with JWST. Astrophysical Journal, 2017, 849, 111.	4.5	31
13	THE ROLE OF STAR FORMATION AND AGN IN DUST HEATING OF $Z=0.3\hat{a}\in 2.8$ Galaxies. II. INFORMING IR AGN FRACTION ESTIMATES THROUGH SIMULATIONS. Astrophysical Journal, 2016, 833, 60.	4.5	22
14	INVESTIGATING THE PRESENCE OF 500 νm SUBMILLIMETER EXCESS EMISSION IN LOCAL STAR FORMING GALAXIES. Astrophysical Journal, 2013, 778, 51.	4.5	19
15	Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z >Â4 Lensed by a Frontier Fields Cluster. Astrophysical Journal, 2017, 838, 137.	4.5	18
16	A Controlled Study of Cold Dust Content in Galaxies from zÂ=Â0–2. Astrophysical Journal, 2017, 843, 71.	4.5	18
17	Accretion History of AGNs. II. Constraints on AGN Spectral Parameters Using the Cosmic X-Ray Background. Astrophysical Journal, 2020, 889, 17.	4.5	16
18	AGN Selection Methods Have Profound Impacts on the Distributions of Host-galaxy Properties. Astrophysical Journal, 2022, 925, 74.	4.5	15

#	Article	IF	CITATIONS
19	The Accretion History of AGN: A Newly Defined Population of Cold Quasars. Astrophysical Journal, 2020, 900, 5.	4.5	14
20	EARLY SCIENCE WITH THE LARGE MILLIMETER TELESCOPE: EXPLORING THE EFFECT OF AGN ACTIVITY ON THE RELATIONSHIPS BETWEEN MOLECULAR GAS, DUST, AND STAR FORMATION. Astrophysical Journal, 2014, 796, 135.	4.5	13
21	Measuring the Heating and Cooling of the Interstellar Medium at High Redshift: PAH and [C ii] Observations of the Same Star-forming Galaxies at zÂâ^1/4Â2. Astrophysical Journal, 2020, 892, 119.	4.5	9
22	Where Do Obscured AGN Fit in a Galaxy's Timeline?. Astronomical Journal, 2021, 162, 65.	4.7	7
23	Dying of the Light: An X-Ray Fading Cold Quasar at zÂâ^1/4Â0.405. Astrophysical Journal, 2020, 903, 106.	4.5	7
24	Lower-luminosity Obscured AGN Host Galaxies Are Not Predominantly in Major-merging Systems at Cosmic Noon. Astrophysical Journal, 2021, 919, 129.	4.5	7
25	Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures. Astrophysical Journal, 2021, 919, 43.	4.5	6
26	Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST/MIRI Serendipitous Spectroscopic Surveys. Astrophysical Journal, 2017, 836, 171.	4.5	4
27	Accretion history of AGN: Estimating the host galaxy properties in X-ray luminous AGN from zÂ=Â0–3. Monthly Notices of the Royal Astronomical Society, 2022, 515, 82-98.	4.4	4
28	A Comparison of Mid-infrared Spectral Decomposition and Full Infrared Spectral Energy Distribution Modeling to Quantify AGN in Dusty Galaxies: The Necessity of Data between 6 and 14 Microns. Research Notes of the AAS, 2019, 3, 199.	0.7	1
29	An evolving photoelectric efficiency at cosmic noon?. Proceedings of the International Astronomical Union, 2019, 15, 243-245.	0.0	O