Yasuki Ishizaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020719/publications.pdf Version: 2024-02-01

<u> Υλοιικι Ιομιζλκι</u>

#	Article	IF	CITATIONS
1	The Ser19Stop single nucleotide polymorphism (SNP) of human PHYHIPL affects the cerebellum in mice. Molecular Brain, 2021, 14, 52.	2.6	1
2	Temperature elevation in epileptogenic foci exacerbates epileptic discharge through TRPV4 activation. Laboratory Investigation, 2020, 100, 274-284.	3.7	19
3	TRPC5 regulates axonal outgrowth in developing retinal ganglion cells. Laboratory Investigation, 2020, 100, 297-310.	3.7	11
4	Transplantation of iPSâ€derived vascular endothelial cells improves white matter ischemic damage. Journal of Neurochemistry, 2020, 153, 759-771.	3.9	12
5	Deletion of Class II ADP-Ribosylation Factors in Mice Causes Tremor by the Nav1.6 Loss in Cerebellar Purkinje Cell Axon Initial Segments. Journal of Neuroscience, 2019, 39, 6339-6353.	3.6	8
6	The dynamics of revascularization after white matter infarction monitored in Flt1-tdsRed and Flk1-GFP mice. Neuroscience Letters, 2019, 692, 70-76.	2.1	5
7	BMP4 signaling in NPCs upregulates Bcl-xL to promote their survival in the presence of FGF-2. Biochemical and Biophysical Research Communications, 2018, 496, 588-593.	2.1	7
8	X-ray irradiation induces disruption of the blood–brain barrier with localized changes in claudin-5 and activation of microglia in the mouse brain. Neurochemistry International, 2018, 119, 199-206.	3.8	19
9	Temporal Changes in Transcription Factor Expression Associated with the Differentiation State of Cerebellar Neural Stem/Progenitor Cells During Development. Neurochemical Research, 2018, 43, 205-211.	3.3	3
10	Retinal Detachment-Induced MÃ1⁄4ller Glial Cell Swelling Activates TRPV4 Ion Channels and Triggers Photoreceptor Death at Body Temperature. Journal of Neuroscience, 2018, 38, 8745-8758.	3.6	48
11	Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells. Biochemical and Biophysical Research Communications, 2017, 488, 232-238.	2.1	31
12	Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility. FASEB Journal, 2017, 31, 1368-1381.	0.5	37
13	Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells. PLoS ONE, 2016, 11, e0159158.	2.5	32
14	Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions. Journal of Neurochemistry, 2015, 135, 539-550.	3.9	15
15	TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Archiv European Journal of Physiology, 2015, 467, 2495-2507.	2.8	66
16	Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochemical and Biophysical Research Communications, 2015, 458, 168-173.	2.1	30
17	FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage. Biochemical and Biophysical Research Communications, 2015, 463, 1091-1096.	2.1	8
18	Cerebellar neural stem cells differentiate into two distinct types of astrocytes in response to CNTF and BMP2. Neuroscience Letters, 2013, 552, 15-20.	2.1	11

Yasuki İshizaki

#	Article	IF	CITATIONS
19	Astrocytes express functional TRPV2 ion channels. Biochemical and Biophysical Research Communications, 2013, 441, 327-332.	2.1	49
20	Dynamic Changes of CD44 Expression from Progenitors to Subpopulations of Astrocytes and Neurons in Developing Cerebellum. PLoS ONE, 2013, 8, e53109.	2.5	66
21	Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage. Brain Research, 2012, 1469, 43-53.	2.2	20
22	CD44-Positive Cells Are Candidates for Astrocyte Precursor Cells in Developing Mouse Cerebellum. Cerebellum, 2012, 11, 181-193.	2.5	23
23	Cerebral capillary endothelial cells are covered by the VEGF-expressing foot processes of astrocytes. Neuroscience Letters, 2011, 497, 116-121.	2.1	10
24	TRPV2 Enhances Axon Outgrowth through Its Activation by Membrane Stretch in Developing Sensory and Motor Neurons. Journal of Neuroscience, 2010, 30, 4601-4612.	3.6	163
25	Cerebellar granule cell precursors can differentiate into astroglial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1211-1216.	7.1	42
26	A Role for p27/Kip1 in the Control of Cerebellar Granule Cell Precursor Proliferation. Journal of Neuroscience, 2000, 20, 5756-5763.	3.6	143
27	POSSIBLE INVOLVEMENT OF A CHLORIDE–BICARBONATE EXCHANGER IN APOPTOSIS OF ENDOTHELIAL CELLS AND CARDIOMYOCYTES. Cell Biology International, 1999, 23, 241-249.	3.0	27
28	A caspase inhibitor blocks ischaemiaâ€induced delayed neuronal death in the gerbil. European Journal of Neuroscience, 1998, 10, 777-781.	2.6	100
29	A Role for Caspases in Lens Fiber Differentiation. Journal of Cell Biology, 1998, 140, 153-158.	5.2	265
30	A migration stimulating factor for vascular endothelial cells is released by cultured astrocytes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1990, 66, 81-83.	3.8	1