
Rosa M Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalization of mesoporous silica for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2004, 30, 83-93.	1.8	205
2	Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment. Enzyme and Microbial Technology, 1989, 11, 353-359.	1.6	188
3	Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzyme and Microbial Technology, 1989, 11, 360-366.	1.6	148
4	Immobilization-stabilization of Penicillin G acylase fromEscherichia coli. Applied Biochemistry and Biotechnology, 1990, 26, 181-195.	1.4	141
5	Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters. Microporous and Mesoporous Materials, 2008, 114, 201-213.	2.2	107
6	Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catalysis Today, 2018, 304, 119-126.	2.2	79
7	A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Microporous and Mesoporous Materials, 2010, 132, 487-493.	2.2	68
8	Ethanol improves lipase immobilization on a hydrophobic support. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 13-20.	1.8	65
9	<i>In situ</i> and postâ€synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. Journal of Chemical Technology and Biotechnology, 2017, 92, 2583-2593.	1.6	63
10	Rapid Inâ€Situ Immobilization of Enzymes in Metal–Organic Framework Supports under Mild Conditions. ChemCatChem, 2017, 9, 1182-1186.	1.8	62
11	Protecting effect of competitive inhibitors during very intense insolubilized enzyme-activated support multipoint attachments: trypsin (amine)-agarose (aldehyde) system. Enzyme and Microbial Technology, 1988, 10, 227-232.	1.6	56
12	Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase. Molecules, 2014, 19, 7057-7071.	1.7	47
13	Equilibrium controlled synthesis of cephalothin in water-cosolvent systems by stabilized penicillin G acylase. Applied Biochemistry and Biotechnology, 1991, 27, 277-290.	1.4	42
14	Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. Langmuir, 2017, 33, 5065-5076.	1.6	39
15	Effect of immiscible organic solvents on activity/stability of native chymotrypsin and immobilized-stabilized derivatives. Biotechnology and Bioengineering, 1992, 39, 75-84.	1.7	36
16	Catalytic transesterification of corn oil and tristearin using immobilized lipases from Thermomyces lanuginosa. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 775-781.	0.8	32
17	Stabilizing effect of penicillin G sulfoxide, a competitive inhibitor of penicillin G acylase: Its practical applications. Enzyme and Microbial Technology, 1991, 13, 210-214.	1.6	31
18	Active-site titration analysis of surface influences on immobilized Candida antarctica lipase B activity. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 60-65.	1.8	31

Rosa M Blanco

#	Article	IF	CITATIONS
19	Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes. RSC Advances, 2014, 4, 34356-34368.	1.7	31
20	Bottle-around-the-ship: A method to encapsulate enzymes in ordered mesoporous materials. Microporous and Mesoporous Materials, 2010, 129, 173-178.	2.2	30
21	Measurement of pH changes in an inaccessible aqueous phase during biocatalysis in organic media. Biotechnology Letters, 1990, 12, 475-480.	1.1	27
22	Penicillin G acylase fromKluyvera citrophila new choice as industrial enzyme. Biotechnology Letters, 1992, 14, 285-290.	1.1	27
23	Designing Functionalized Mesoporous Materials for Enzyme Immobilization: Locating Enzymes by Using Advanced TEM Techniques. ChemCatChem, 2013, 5, 903-909.	1.8	27
24	Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents. BBA - Proteins and Proteomics, 1997, 1339, 167-175.	2.1	26
25	Controlled manipulation of enzyme specificity through immobilization-induced flexibility constraints. Applied Catalysis A: General, 2018, 565, 59-67.	2.2	24
26	Agarose-chymotrypsin as a catalyst for peptide and amino acid ester synthesis in organic media. Biotechnology Letters, 1989, 11, 811-816.	1.1	21
27	Solventâ€free preparation of phytosteryl esters with fatty acids from butterfat in equimolecular conditions in the presence of a lipase from <i>Candida rugosa</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 745-750.	1.6	21
28	In-situ immobilization of enzymes in mesoporous silicas. Solid State Sciences, 2011, 13, 691-697.	1.5	21
29	Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catalysis Today, 2012, 195, 76-82.	2.2	20
30	One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catalysis Today, 2022, 390-391, 265-271.	2.2	20
31	Stabilization of Trypsin by Multiple-Point Attachment to Aldehyde-Agarose Gels. Annals of the New York Academy of Sciences, 1987, 501, 67-72.	1.8	19
32	Sustainable One-Pot Immobilization of Enzymes in/on Metal-Organic Framework Materials. Catalysts, 2021, 11, 1002.	1.6	18
33	Enzyme reaction engineering: Design of peptide synthesis by stabilized trypsin. Enzyme and Microbial Technology, 1991, 13, 573-583.	1.6	17
34	Stabilization of a β-glucosidase from Aspergillus niger by binding to an amine agarose gel. Journal of Molecular Catalysis B: Enzymatic, 2000, 11, 63-69.	1.8	17
35	SBA-15 with short channels for laccase immobilization. Microporous and Mesoporous Materials, 2020, 309, 110527.	2.2	15
36	Efficient One-Step Immobilization of CaLB Lipase over MOF Support NH2-MIL-53(Al). Catalysts, 2020, 10, 918.	1.6	15

Rosa M Blanco

#	Article	IF	CITATIONS
37	Location of enzyme in lipase-SBA-12 hybrid biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 23-25.	1.8	14
38	The equilibrium and kinetics ofN-acetyl-tryptophan phenylethyl ester synthesis by agarose-chymotrypsin in organic media. Biotechnology and Bioengineering, 1992, 40, 1092-1096.	1.7	10
39	Hybrid composites octyl-silica-methacrylate agglomerates as enzyme supports. Applied Catalysis A: General, 2013, 450, 204-210.	2.2	10
40	Effect of thermodynamic water activity on amino-acid ester synthesis catalyzed by agarose-chymotrypsin in 3-pentanone. Biochimica Et Biophysica Acta - General Subjects, 1992, 1156, 67-70.	1.1	9
41	Immobilized lipases fromCandida antarcticafor producing tyrosyl oleate in solvent-free medium. Biocatalysis and Biotransformation, 2012, 30, 245-254.	1.1	8
42	Location of laccase in ordered mesoporous materials. APL Materials, 2014, 2, .	2.2	8
43	Successful encapsulation of βâ€glucosidase during the synthesis of siliceous mesostructured materials. Journal of Chemical Technology and Biotechnology, 2018, 93, 2625-2634.	1.6	7
44	Fully Dispersed and Covalently Attached Chymotrypsin Derivatives as Industrial Catalysts in Biphasic Systems Annals of the New York Academy of Sciences, 1992, 672, 158-166.	1.8	5
45	Peptide synthesis by stabilized trypsin: Industrial kinetic studies under extreme experimental conditions. Journal of Molecular Catalysis, 1992, 73, 97-113.	1.2	3
46	Design of Novel Biocatalysts by "Bioimprinting" during Unfolding-Refolding of Fully Dispersed Covalently Immobilized Enzymes. Annals of the New York Academy of Sciences, 1995, 750, 349-356.	1.8	3
47	Two additives to improve stability of immobilized lipase. Biocatalysis and Biotransformation, 2018, 36, 224-232.	1.1	3
48	Highly improved enzymatic peptide synthesis by using biphasic reactors. Biocatalysis and Biotransformation, 2018, 36, 271-278.	1.1	3
49	Utilization of Unfolding/Refolding Strategies for Reactivation of Immobilized Derivatives of Lipases after Inactivation by Organic Solvents. , 1996, , 257-271.		3
50	A kinetic study of the lipase-catalyzed ethanolysis of two short-chain triradylglycerols: Alkylglycerols vs. triacylglycerols. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 101-106.	1.8	2
51	Modulation of Activity/Stability Properties of Lipase from Pseudomonas Flourescens by Multipoint Covalent Immobilization on Glyoxyl-Supports. , 1996, , 243-256.		2
52	Fully Dispersed and Covalently Attached Chymotrypsin Derivatives as Industrial Catalysts in Biphasic Systems Annals of the New York Academy of Sciences, 1992, 672, 158-166.	1.8	1
53	Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis. Biomedica Biochimica Acta, 1991, 50, S110-3.	0.1	1
54	Lipase immobilization in ordered mesoporous materials. Studies in Surface Science and Catalysis, 2007, 165, 897-900.	1.5	0