Ricardo Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composition functionals in higher order calculus of variations and Noether's theorem. Applicable Analysis, 2022, 101, 6321-6338.	0.6	1
2	Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 519.	0.6	0
3	Stability of Gene Regulatory Networks Modeled by Generalized Proportional Caputo Fractional Differential Equations. Entropy, 2022, 24, 372.	1.1	9
4	Minimization Problems for Functionals Depending on Generalized Proportional Fractional Derivatives. Fractal and Fractional, 2022, 6, 356.	1.6	2
5	On systems of fractional differential equations with the Ï^ aputo derivative and their applications. Mathematical Methods in the Applied Sciences, 2021, 44, 8026-8041.	1.2	16
6	Optimal leader-following consensus of fractional opinion formation models. Journal of Computational and Applied Mathematics, 2021, 381, 112996.	1.1	6
7	Synchronization of Caputo fractional neural networks with bounded time variable delays. Open Mathematics, 2021, 19, 388-399.	0.5	0
8	A Generalization of a Fractional Variational Problem with Dependence on the Boundaries and a Real Parameter. Fractal and Fractional, 2021, 5, 24.	1.6	3
9	New Variational Problems with an Action Depending on Generalized Fractional Derivatives, the Free Endpoint Conditions, and a Real Parameter. Symmetry, 2021, 13, 592.	1.1	0
10	On the necessary optimality conditions for the fractional Cucker–Smale optimal control problem. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105678.	1.7	10
11	Non-Instantaneous Impulsive Fractional Differential Equations with State Dependent Delay and Practical Stability. Acta Mathematica Scientia, 2021, 41, 1699-1718.	0.5	8
12	Variational Problems with Time Delay and Higher-Order Distributed-Order Fractional Derivatives with Arbitrary Kernels. Mathematics, 2021, 9, 1665.	1.1	1
13	Approximate Iterative Method for Initial Value Problem of Impulsive Fractional Differential Equations with Generalized Proportional Fractional Derivatives. Mathematics, 2021, 9, 1979.	1.1	2
14	Global Stability Condition for the Disease-Free Equilibrium Point of Fractional Epidemiological Models. Axioms, 2021, 10, 238.	0.9	3
15	Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels. AIMS Mathematics, 2021, 6, 5351-5369.	0.7	4
16	Quadratic Lyapunov Functions for Stability of the Generalized Proportional Fractional Differential Equations with Applications to Neural Networks. Axioms, 2021, 10, 322.	0.9	14
17	Functional Differential Equations Involving the Ï^-Caputo Fractional Derivative. Fractal and Fractional, 2020, 4, 29.	1.6	23
18	Fractional variational principle of Herglotz for a new class of problems with dependence on the boundaries and a real parameter. Journal of Mathematical Physics, 2020, 61, 102701.	0.5	3

#	Article	IF	CITATIONS
19	On Leader-Following Consensus in Multi-Agent Systems with Discrete Updates at Random Times. Entropy, 2020, 22, 650.	1.1	2
20	An Extension of the Fractional Gronwall Inequality. Lecture Notes in Electrical Engineering, 2020, , 20-28.	0.3	7
21	Non-invasive Control of the Fractional Hegselmann–Krause Type Model. Lecture Notes in Electrical Engineering, 2019, , 14-27.	0.3	2
22	The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.2	78
23	Expansion Formulas for Fractional Derivatives. SpringerBriefs in Applied Sciences and Technology, 2019, , 33-59.	0.2	0
24	The Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, 2019, , 61-113.	0.2	1
25	Fractional Calculus. SpringerBriefs in Applied Sciences and Technology, 2019, , 1-19.	0.2	2
26	Optimal Leader–Follower Control for the Fractional Opinion Formation Model. Journal of Optimization Theory and Applications, 2019, 182, 1171-1185.	0.8	18
27	Leader-following consensus for fractional multi-agent systems. Advances in Difference Equations, 2019, .	3.5	13
28	Fractional differential equations and Volterra–Stieltjes integral equations of the second kind. Computational and Applied Mathematics, 2019, 38, 1.	1.0	5
29	Analysis and numerical approximation of tempered fractional calculus of variations problems. Journal of Computational and Applied Mathematics, 2019, 361, 1-12.	1.1	21
30	A Fractional Measles Model Having Monotonic Real Statistical Data for Constant Transmission Rate of the Disease. Fractal and Fractional, 2019, 3, 53.	1.6	23
31	An epidemiological MSEIR model described by the Caputo fractional derivative. International Journal of Dynamics and Control, 2019, 7, 776-784.	1.5	74
32	A numerical study of fractional relaxation–oscillation equations involving \$\$psi \$\$ Ï^ -Caputo fractional derivative. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 1873-1891.	0.6	43
33	Fractional Differential Equations with Mixed Boundary Conditions. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42, 1687-1697.	0.4	37
34	Further properties of Osler's generalized fractional integrals and derivatives with respect to another function. Rocky Mountain Journal of Mathematics, 2019, 49, .	0.2	15
35	Analysis of a fractional SEIR model with treatment. Applied Mathematics Letters, 2018, 84, 56-62.	1.5	88
36	The Euler–Lagrange and Legendre equations for functionals involving distributed–order fractional derivatives. Applied Mathematics and Computation, 2018, 331, 394-403.	1.4	10

#	Article	IF	CITATIONS
37	Combined fractional variational problems of variable order and some computational aspects. Journal of Computational and Applied Mathematics, 2018, 339, 374-388.	1.1	16
38	Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Mathematical Methods in the Applied Sciences, 2018, 41, 336-352.	1.2	176
39	A formulation of Noether's theorem for fuzzy problems of the calculus of variations. Afrika Matematika, 2018, 29, 33-46.	0.4	Ο
40	Fractional Opinion Formation Models with Leadership. , 2018, , .		0
41	Optimization Conditions for Some Fractional Problems. , 2018, , .		Ο
42	Application of predictive control to the Hegselmannâ€Krause model. Mathematical Methods in the Applied Sciences, 2018, 41, 9191-9202.	1.2	10
43	A fractional Malthusian growth model with variable order using an optimization approach. Statistics, Optimization and Information Computing, 2018, 6, .	0.4	15
44	Optimality conditions for fractional variational problems with free terminal time. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 1-19.	0.6	8
45	Fractional Herglotz variational problems of variable order. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 143-154.	0.6	13
46	The Cape Verde International Days on Mathematics 2017. Statistics, Optimization and Information Computing, 2018, 6, .	0.4	0
47	Variational Problems Involving a Caputo-Type Fractional Derivative. Journal of Optimization Theory and Applications, 2017, 174, 276-294.	0.8	29
48	Constrained fractional variational problems of variable order. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 80-88.	8.5	11
49	Variational methods for the solution of fractional discrete/continuous Sturm–Liouville problems. Journal of Mechanics of Materials and Structures, 2017, 12, 3-21.	0.4	7
50	Generalized Fuzzy Euler–Lagrange equations and transversality conditions. Tbilisi Mathematical Journal, 2017, 10, .	0.3	0
51	Caputo–Hadamard Fractional Derivatives of Variable Order. Numerical Functional Analysis and Optimization, 2017, 38, 1-19.	0.6	44
52	A Caputo fractional derivative of a function with respect to another function. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 460-481.	1.7	641
53	What is the best fractional derivative to fit data?. Applicable Analysis and Discrete Mathematics, 2017, 11, 358-368.	0.3	36
54	A Gronwall inequality for a general Caputo fractional operator. Mathematical Inequalities and Applications, 2017, , 1089-1105.	0.1	23

#	Article	IF	CITATIONS
55	Modeling some real phenomena by fractional differential equations. Mathematical Methods in the Applied Sciences, 2016, 39, 4846-4855.	1.2	129
56	A remark on local fractional calculus and ordinary derivatives. Open Mathematics, 2016, 14, 1122-1124.	0.5	47
57	Fractional Differential Equations With Dependence on the Caputo–Katugampola Derivative. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	72
58	A Numerical Method to Solve Higher-Order Fractional Differential Equations. Mediterranean Journal of Mathematics, 2016, 13, 1339-1352.	0.4	10
59	Caputo derivatives of fractional variable order: Numerical approximations. Communications in Nonlinear Science and Numerical Simulation, 2016, 35, 69-87.	1.7	142
60	Fractional Variational Problems Depending on Indefinite Integrals and with Delay. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39, 1515-1528.	0.4	8
61	A scale variational principle of Herglotz. Publicationes Mathematicae, 2016, 89, 187-201.	0.1	Ο
62	Numerical solution for fractional variational problems using the Jacobi polynomials. Applied Mathematical Modelling, 2015, 39, 6461-6470.	2.2	8
63	Computing Hadamard type operators of variable fractional order. Applied Mathematics and Computation, 2015, 257, 74-88.	1.4	16
64	Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization, 2015, 64, 1381-1391.	1.0	21
65	Variational problems for Hölderian functions with free terminal point. Mathematical Methods in the Applied Sciences, 2015, 38, 1059-1069.	1.2	1
66	A discrete method to solve fractional optimal control problems. Nonlinear Dynamics, 2015, 80, 1811-1816.	2.7	64
67	Variational problems with Hadamard type fractional integrals. , 2014, , .		0
68	Existence results for fractional q-difference equations of order with three-point boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1675-1685.	1.7	34
69	Fractional order optimal control problems with free terminal time. Journal of Industrial and Management Optimization, 2014, 10, 363-381.	0.8	92
70	Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 2367-2381.	0.5	23
71	A discrete time method to the first variation of fractional order variational functionals. Open Physics, 2013, 11, .	0.8	4
72	General necessary conditions for infinite horizon fractional variational problems. Applied Mathematics Letters, 2013, 26, 787-793.	1.5	2

#	Article	IF	CITATIONS
73	Numerical approximations of fractional derivatives with applications. Asian Journal of Control, 2013, 15, 698-712.	1.9	59
74	Discrete direct methods in the fractional calculus of variations. Computers and Mathematics With Applications, 2013, 66, 668-676.	1.4	46
75	Generalized transversality conditions in fractional calculus of variations. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 443-452.	1.7	14
76	A generalized fractional variational problem depending on indefinite integrals: Euler–Lagrange equation and numerical solution. JVC/Journal of Vibration and Control, 2013, 19, 2177-2186.	1.5	14
77	Free time fractional optimal control problems. , 2013, , .		10
78	An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order. Scientific World Journal, The, 2013, 2013, 1-11.	0.8	8
79	A Numerical Scheme to Solve Fractional Optimal Control Problems. Conference Papers in Mathematics, 2013, 2013, 1-10.	0.5	11
80	Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative. Numerical Functional Analysis and Optimization, 2012, 33, 301-319.	0.6	59
81	Approximation of fractional integrals by means of derivatives. Computers and Mathematics With Applications, 2012, 64, 3090-3100.	1.4	39
82	Fractional variational problems with the Riesz–Caputo derivative. Applied Mathematics Letters, 2012, 25, 142-148.	1.5	40
83	Fractional variational problems depending on indefinite integrals. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 1009-1025.	0.6	53
84	Isoperimetric problems of the calculus of variations with fractional derivatives. Acta Mathematica Scientia, 2012, 32, 619-630.	0.5	17
85	Fractional Euler–Lagrange Differential Equations via Caputo Derivatives. , 2012, , 109-118.		12
86	Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1490-1500.	1.7	182
87	Nondifferentiable variational principles in terms of a quantum operator. Mathematical Methods in the Applied Sciences, 2011, 34, n/a-n/a.	1.2	4
88	Fractional variational calculus for nondifferentiable functions. Computers and Mathematics With Applications, 2011, 61, 3097-3104.	1.4	40
89	Generalized Euler–Lagrange Equations for Variational Problems with Scale Derivatives. Letters in Mathematical Physics, 2010, 92, 221-229	0.5	5
90	Connectedness and compactness on standard sets. Mathematical Logic Quarterly, 2010, 56, 63-66.	0.2	2

#	Article	lF	CITATIONS
91	Leitmann's direct method for fractional optimization problems. Applied Mathematics and Computation, 2010, 217, 956-962.	1.4	35
92	A fractional calculus of variations for multiple integrals with application to vibrating string. Journal of Mathematical Physics, 2010, 51, .	0.5	100
93	Calculus of variations with fractional derivatives and fractional integrals. Applied Mathematics Letters, 2009, 22, 1816-1820.	1.5	142
94	A strong form of almost differentiability. Journal of Mathematical Sciences, 2009, 161, 894-908.	0.1	1
95	Hölderian variational problems subject to integral constraints. Journal of Mathematical Analysis and Applications, 2009, 359, 674-681.	0.5	29
96	Isoperimetric Problems on Time Scales with Nabla Derivatives. JVC/Journal of Vibration and Control, 2009, 15, 951-958.	1.5	57
97	An elementary proof of a converse mean-value theorem. International Journal of Mathematical Education in Science and Technology, 2008, 39, 1110-1111.	0.8	2
98	A qualitative analysis of a Mycoplasma genitalium epidemiological modelâ€. Computational and Mathematical Methods, 0, , e1199.	0.3	0